QoS 멀티캐스트 라우팅을 위한 계획된 트리 재구성 방법

Pre-Planned Tree Reconfiguration Mechanism for QoS Multicast Routing

  • 발행 : 2007.04.15

초록

전송-수신 쌍들을 연결하는 많은 수의 경로들로 이루어진 멀티캐스트 트리에서 네트워크 구성요소의 실패는 멀티캐스트 트리의 일부를 손상시킬 수 있다. 그러나 하나의 구성요소의 실패를 복구하기 위해 전체 멀티캐스트 트리를 다시 만드는 것은, 실패의 영향을 받지 않은 경로를 사용하는 그룹 멤버들까지도 서비스의 중단을 겪어야 하기 때문에 바람직하지 않다. 본 논문은 QoS 멀티캐스트 트리에서 재구성해야 할 영역을 줄이면서 재구성의 성공 가능성을 최대화하는 계획된 재구성(Pre-Planned Reconfiguration: PPR) 정책을 제안한다. PPR 방식은 멀티캐스트 트리의 전송-수신 쌍을 연결하는 각 경로에 재구성 경로를 미리 만들고, 이들 경로에 필요한 자원을 미리 예약해 둔다. 이를 위해 우리는 기존 멀티캐스트 트리의 변화를 최소화하며 손상되지 않은 부분들의 서비스를 최대한 유지하는 재구성 경로의 라우팅 방법을 고안하였으며, 효율적 자원 공유 방법을 사용하여 재구성 경로들을 위해 예약된(실패가 일어나지 않을 경우 사용되지 않는) 자원의 양을 줄인다. PPR 방식은 실패 복구를 위해 여러 멀티캐스트 세션들이 동시에 엄청난 경쟁을 하는 것을 막을 수 있다. 시물레이션을 통해 최단경로 라우팅을 사용하는 전송자 중심 멀티캐스트 트리와 공유 멀티 캐스트 트리에서 각각 성능을 평가한 결과 PPR 방식은 적당한 오버헤드내에서 모든 그룹 멤버들에게 성공적인 재구성을 제공한다. 또한 PPR 방식은 그룹 멤버쉽이 동적으로 변화할 때에도 잘 적응한다.

A multicast tree includes several, possibly a large number of, paths connecting source-receiver pairs, and network failure may disable part of the multicast tree. Reconstruction of the entire multicast tree to recover from a component failure is highly undesirable, because some group members have to suffer service disruptions even though the communication paths to/from them are not affected by the failure. To limit reconfiguration region and to maximize the likelihood of successful reconfiguration, we propose and evaluate a pre-planned reconfiguration policy for QoS multicast sessions. Specifically, we equip a reconfiguration path (RP) with each end-to-end path that connects a source-receiver pair in the multicast tree, and reserve resources in advance along the RPs. Efficient resource-sharing techniques are applied to reduce the amount of resources reserved for RPs but not used in the absence of failures. This way, we prevent uncontrolled competition among different multicast sessions which may simultaneously try to recover from failures. We evaluate the performance of the proposed scheme using simulation on randomly-generated networks. We use the shortest-path routing for QoS multicast sessions, and simulate both source-based and shared multicast trees. The evaluation results indicates that successful pre-planned reconfiguration can be achieved for all group members with reasonable overhead. Our scheme is also shown to adapt well to dynamic changes of group membership.

키워드

참고문헌

  1. P. Winter, 'Steiner problem in networks: A survey,' Networks, vol. 17, no. 2, pp. 129-167, 1987 https://doi.org/10.1002/net.3230170203
  2. V. Rayward-Smith and A. Clare, 'On finding steiner vertices,' Networks, vol. 16, no. 3, pp. 283-294, 1986 https://doi.org/10.1002/net.3230160305
  3. L. Kou, G. Markowsky, and L. Berman, 'A fast algorithm for steiner trees in graphs,' Acta Informatica, vol. 15, pp. 141-145, 1981 https://doi.org/10.1007/BF00288961
  4. K. Bharath-Kumar and J. Jaffe, 'Routing to multiple destinations in computer networks,' IEEE Trans. Communications, vol. 31, pp. 343-353, 1983 https://doi.org/10.1109/TCOM.1983.1095818
  5. S. Deering, C. Patridge, and D. Waitzman, 'Dis-tance vector multicast routing protocol,' Intenet RFC 1075, November 1988
  6. J. Moy, 'Multicast routing extensions for OSPF,' Communications of the ACM, vol. 37, no. 8, pp. 61-66, August 1994 https://doi.org/10.1145/179606.179654
  7. M. Doar and I. Leslie, 'How bad is naive multi-cast routing?,' in Proc. IEEE INFOCOM, pp. 82-89, 1993 https://doi.org/10.1109/INFCOM.1993.253246
  8. A. Ballardie, P. Francis, and J. Crowcroft, 'Core based tree: An architecture for sacalable inter-domain multicast routing,' in Proc. ACM SIGCOMM, pp. 85-95, 1993
  9. D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jaconson, C. Liu, F. Sharma, and L. Wei, 'Protocol independent multi-cast-sparse mode (pim-sm): Protocol specification,' Intenet-Drft: RFC 2117, 1997
  10. H. Eriksson, 'MBONE: The multicast backbone,' Communications of the ACM, vol. 37, no. 8, pp. 54-60, August 1994 https://doi.org/10.1145/179606.179627
  11. C. Diot, W. Dabbous, and J. Crowcroft, 'Multi-point communication: A survey of protocols, functions, and mechanisms,' IEEE Journal on Selected Areas in Commuications, vol. 15, no. 3, pp. 277-290, April 1997 https://doi.org/10.1109/49.564128
  12. K. Carlberg and J. Crowcroft, 'Building shared trees using a one-to-many joining mechanism,' ACM Computer Communication review, vol. 27, no. 1, pp. 5-11, 1997 https://doi.org/10.1145/251007.251008
  13. N. Maxemchuk, 'Video distribution on multicast networks,' IEEE Journal on Selected Areas in Communications, vol. 15, no. 3, pp. 357-372, April 1997 https://doi.org/10.1109/49.564134
  14. M. Faloutsos, A. Banerjea, and R. Pankaj, 'QoSMIC: Quality of Service sensitive Multicast Internet protoCol,' in Proc. ACM SIGCOMM, pp. 144-153, 1998 https://doi.org/10.1145/285237.285276
  15. C. Labovitz, A. Ahuja, and F. Jahanian, 'Experi-mental study f Internet stability and wide-area backbone failures,' Technical Report CSE-TR-382-98, University of Michigan, 1998
  16. Reference omitted to preserve anonymity
  17. A. Banerjea, C. Parris, and D. Ferrairi, 'Recove-ring guaranteed performance service connections from single and multiple faults,' in Proc. IEEE Globecom, pp. 194-205, 1994 https://doi.org/10.1109/GLOCOM.1994.513400
  18. A. Banerjea, 'Simulation study of the capacity effects of dispersity routing for fault tolerant realtime channels,' in Proc. ACM SIGCOMM, pp. 194-205, 1996 https://doi.org/10.1145/248156.248174
  19. C. Dovrolis and P. Ramathan, 'Resource aggre-gation for fault tolerance in intergrated services networks,' ACM Computer Communication Review, vol. 28, no. 2, pp. 39-53, 1998 https://doi.org/10.1145/279345.279349
  20. B. Waxman, 'Routing of multipoint connections,' IEEE Journal on Selected Areas in Communications, vol. 6, no. 9, pp. 1617-1622, December 1988 https://doi.org/10.1109/49.12889
  21. H. Salama, D. Reeves, and Y. Viniotis, 'Evaluation of multicast routing algorithms real-time communication on high-speed networks,' IEEE Journal on Selected Areas in Communications, vol. 15, no. 3. pp. 332-345, April 1997 https://doi.org/10.1109/49.564132
  22. C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, 'Real-time communication in packet-switched networks,' Proceedings of the IEEE, vol. 82, no. 1, pp. 122-139, January 1994 https://doi.org/10.1109/5.259431
  23. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, 'RSVP: A new resource reservation protocol,' IEEE Network, pp. 8-18, September 1993 https://doi.org/10.1109/65.238150
  24. S. McCanne, V. Jacobson, and M. Vetterli, 'Receiver-drien layered multicast,' in Proc. ACM SIGCOMM, pp. 117-130, 1996 https://doi.org/10.1145/248156.248168
  25. A. Gupta, W. Howe, M. Moran, and Q. Nguyen, 'Resource sharing for multi-party real-time communication,' in Proc. IEEE INFOCOM, pp. 1230-1237, 1995 https://doi.org/10.1109/INFCOM.1995.516002
  26. J. Cui, M. Faloutsos, and M. Gerla, 'An architecture for scalable, efficient and fast fault-tolerant multicast provisioning,' IEEE Network, vol. 18, no. 6, pp. 26-34, 2004 https://doi.org/10.1109/MNET.2004.1276608
  27. M. Kodialalam and T. Lakshman, 'Dynamic routing of bandwidth guaranteed multicasts with failure backup,' IEEE ICNP, pp. 259-268, 2002
  28. A. Fei, J. Cui, M. Gerla, and D. Cavendish, 'A dual-tree scheme for fault-tolerant multicast,' IEEE ICC, 2001 https://doi.org/10.1109/ICC.2001.937328
  29. O. Banimelhem, A. Agarwal, and J. Atwood, 'A Tree Divison approach to support local failure recovery for multicasting in MPLS networks,' IEEE ICW, 2005 https://doi.org/10.1109/ICW.2005.19
  30. C. Wu, S. Lee, and Y. Hou, 'Backup VP Pre-planning Stragtegies for survivable multicast ATM Networks,' IEEE ICC, 1997 https://doi.org/10.1109/ICC.1997.605230