Intelligent Distributed Platform using Mobile Agent based on Dynamic Group Binding

동적 그룹 바인딩 기반의 모바일 에이전트를 이용한 인텔리전트 분산 플랫폼

  • Published : 2007.06.30

Abstract

The current trends in information technology and intelligent systems use data mining techniques to discover patterns and extract rules from distributed databases. In distributed environment, the extracted rules from data mining techniques can be used in dynamic replications, adaptive load balancing and other schemes. However, transmission of large data through the system can cause errors and unreliable results. This paper proposes the intelligent distributed platform based on dynamic group binding using mobile agents which addresses the use of intelligence in distributed environment. The proposed grouping service implements classification scheme of objects. Data compressor agent and data miner agent extracts rules and compresses data, respectively, from the service node databases. The proposed algorithm performs preprocessing where it merges the less frequent dataset using neuro-fuzzy classifier before sending the data. Object group classification, data mining the service node database, data compression method, and rule extraction were simulated. Result of experiments in efficient data compression and reliable rule extraction shows that the proposed algorithm has better performance compared to other methods.

오늘날 정보 기술 및 지능형 시스템에서는 분산 데이터베이스로부터 패턴들을 찾고 규칙들을 추출하기 위해 데이터 마이닝 기술을 사용한다. 분산환경에서 데이터 마이닝 기술을 이용해 추출된 규칙들은 동적인 중복, 적응형 부하 균형 및 기타 기술들에서 활용될 수 있다. 그러나 대량의 데이터 전송은 에러를 야기하며 신뢰할 수 없는 결과를 초래할 수 있다. 이 논문은 이동 에이전트를 사용하여 동적 그룹 바인딩을 기반으로 한 인텔리전트 분산 플랫폼을 제안한다. 그룹서비스를 통해 효율적인 객체 검색을 위한 분류 알고리즘을 구현한다. 지능형 모델은 동적 중복을 위해 추출된 규칙을 사용한다. 데이터 마이닝 에이전트와 데이터 압축 에이전트는 각각 서비스 노드 데이터베이스로부터 규칙을 추출하여 데이터를 압축한다. 제안한 알고리즘은 데이터를 전송하기 전에 neuro-fuzzy 분류기를 사용하여 빈도가 적은 데이터 ???V을 합하는 전처리 과정을 수행한다. 객체그룹 분류, 서비스 노드 데이터베이스 마이닝, 데이터 압축 및 규칙 추출에 대한 시뮬레이션을 수행했다. 효율적인 데이터 압축 및 신뢰성 있는 규칙 추출에 대한 실험 결과 제안한 알고리즘이 다른 방법들과 비교해 이러한 관점에서 성능이 우수함을 나타내었다.

Keywords