상악 전치부 후방 견인 시 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구

The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method

  • 정애진 (원광대학교 치과대학 치과교정학교실) ;
  • 김운수 (원광대학교 치과대학 치과교정학교실) ;
  • 이수행 (원광대학교 치과대학 치과교정학교실) ;
  • 강성수 (원광대학교 치과대학 치과교정학교실) ;
  • 최희인 (원광대학교 치과대학 치과교정학교실) ;
  • 조진형 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실)
  • Chung, Ae-Jin (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Un-Su (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Lee, Soo-Haeng (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kang, Seong-Soo (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Choi, Hee-In (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Jo, Jin-Hyung (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 발행 : 2007.04.30

초록

상악 전치부 후방 견인 시의 이동 양상 및 응력 분포를 건조 두개골을 전산화 단층 촬영에 의해 3차원 영상화한 유한 요소 모델 상에서 알아보고자 하였다. 피질골 절단술의 시행 여부와 고정원, 힘의 작용점을 각기 달리 설정하여 8개의 실험군을 구성하여 비교하였다. 통상적인 T-loop을 이용하여 공간폐쇄를 하는 경우 전치부는 후하방으로 경사이동 하였으며, 구치부에서도 약간 전방 이동하였다. 피질골 절단술을 동반하여 전치부를 견인한 경우, 전치부 골편에서의 응력 분포가 전반적으로 넓게 분포되었으며, 전치부 경사의 정도가 적은 반면에 변위량은 훨씬 더 많았다. 협측에서의 견인 시 상악 협측에 식립된 미니 임플랜트와 견치 Power arm간에 견인력을 가한 경우가 미니 임플랜트로 고정원이 강화된 제2소구치와 견치 브라켓 간에 견인력을 가한 경우보다 전치부의 후하방 경사 정도가 적었다. 구개측에서 Powerarm에 대한 견인 시 정중구개봉합 부위에 식립한 미니 임플랜트로부터 견인력을 가한 경우가 상악 제1, 2대구치 간 구개면에 식립된 미니 임플랜트로부터 견인력을 가한 경우보다 전치부의 후하방 경사 정도가 컸다. 이러한 결과로써 치아이동 시 피질골 절단술의 효과와 저항중심에 대한 교정력 벡터 조정의 의미를 확인할 수 있었다.

Objective: The purpose of this study was to evaluate the displacement pattern and the stress distribution shown on a finite element model 3-D visualization of a dry human skull using CT during the retraction of upper anterior teeth. Methods: Experimental groups were differentiated into 8 groups according to corticotomy, anchorage (buccal: mini implant between the maxillary second premolar and first molar and second premolar reinforced with a mini Implant, palatal: mini implant between the maxillary first molar and second molar and mini implant on the midpalatal suture) and force application point (use of a power arm or not). Results: In cases where anterior teeth were retracted by a conventional T-loop arch wire, the anterior teeth tipped more postero-inferiorly and the posterior teeth moved slightly in a mesial direction. In cases where anterior teeth were retracted with corticotomy, the stress at the anterior bone segment was distributed widely and showed a smaller degree of tipping movement of the anterior teeth, but with a greater amount of displacement. In cases where anterior teeth were retracted from the buccal side with force applied to the mini implant placed between the maxillary second premolar and the first molar to the canine power arm, it showed that a smaller degree of tipping movement was generated than when force was applied to the second premolar reinforced with a mini implant from the canine bracket. In cases where anterior teeth were retracted from the palatal side with force applied to the mini implant on the midpalatal suture, it resulted in a greater degree of tipping movement than when force was applied to the mini implant between the maxillary first and second molars. Conclusion: The results of this study verifies the effects of corticotomies and the effects of controlling orthodontic force vectors during tooth movement.

키워드

참고문헌

  1. Lee BS, Hwang HW, Chung KR. Clinical use of corticotomies in adult orthodontics. J Korean Assoc Maxillofac Plast Reconstr Surg 1999;21:303-11
  2. Woo JY, Park YC. Experimental study of the vertical location of the centers of resistance for maxillary anterior teeth during retraction using the laser reflection technique. Korean J Orthod 1993;23: 375-89
  3. Kim YW, Sohn BH. A study on initial changes during canine retraction by the finite element method. Korean J Orthod 1988;18:25-53
  4. Profit WR, Henry W, Fields JR. Contemporary orthodontics. 3rd Ed. St. Louis: Mosby; 2000
  5. Cheon OJ, Kim TW, Suhr CH. Three-dimensional finite element analyasis of the phenomenon produced during retraction of four maxillruy incisors. Korean J Orthod 1995;25:525-41
  6. Shelden FC. The role of mechanics in an extraction case. Angle Orthod 1956;26:250-9
  7. Buchner HJ. Closing spaces in orthodontic cases. Angle Orthod 1953;23:158-65
  8. Park YC, Lee JS. Atlas of contemporary orthodontics: Volume I. Simple and effective extraction treatment. Seoul: Shinheung International; 2001
  9. Park YC, Hwang HS, Choy KC. Biomechanics in clinical orthodontics. Seoul: Narae publishing; 1997
  10. Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol 1959;12:515-29 https://doi.org/10.1016/0030-4220(59)90153-7
  11. Gray JB, Steen ME, King GJ, Clark AE. Studies on the efficacy of implants as orthodontic anchorage. Am J Orthod 1983;83:311-7 https://doi.org/10.1016/0002-9416(83)90226-9
  12. Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop 1995;107:251-8 https://doi.org/10.1016/S0889-5406(95)70140-0
  13. Akin-Nergiz N, Nergiz I, Schulz A, Arpak N, Niedermeier W. Reactions of peri-implant tissues to continuous loading of osseointegrated implants. Am J Orthod Dentofacial Orthop 1998;114:292-8 https://doi.org/10.1016/S0889-5406(98)70211-2
  14. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999;115: 166-74 https://doi.org/10.1016/S0889-5406(99)70345-8
  15. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17:266-9
  16. Epker BN, Stella JP, Fish LC. Dentofacial deformities : Volume IV. Integrated orthodontic and surgical correction. 2nd Ed. St. Louis: Mosby; 1999
  17. Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg 1996;54:45-53 https://doi.org/10.1016/S0278-2391(96)90303-1
  18. Kim SC, Tae KC. Corticotomy and the intrusive tooth movement. Korean J Orthod 2003;33:399-405
  19. Jang JW, Sohn BW. A study on the pattern of movement during retraction of maxillary central incisor by finite element method. Korean J Orthod 1991;21:617-34
  20. Caputo M, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic force during canine retraction. Am J Orthod 1974;65: 250-9 https://doi.org/10.1016/S0002-9416(74)90330-3
  21. Bae YJ, Rhee BT. A photoelastic study of the stress distribution by Multiloop Edgewise Arch Wire. Korean J Orthod 1990;20:267-80
  22. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307 https://doi.org/10.1016/0002-9416(84)90187-8
  23. Graber TM, Vanarsdall RL. Orthodontics: Current principles and techniques. St. Louis; Mosby: 1994
  24. Hocevar RA. Understanding, planning, and managing tooth movement: orthodontic force system theory. Am J Orthod 1981;80:457-77 https://doi.org/10.1016/0002-9416(81)90243-8
  25. Gjessing P. Controlled retraction of maxillary incisors. Am J Orthod Dentofacial Orthop 1992;101: 120-31 https://doi.org/10.1016/0889-5406(92)70003-S
  26. Shin SJ, Chang YI. Three dimensional finite element analysis of the phenomenon during distal en masse movement of the maxillary dentition. Korean J Orthod 1998;28:563-80
  27. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77: 396-409 https://doi.org/10.1016/0002-9416(80)90105-0
  28. Dermaut LR, Vanden Bulcke MM. Evaluation of intrusive mechanics of the type 'segmented arch' on a macerated human skull using the laser reflection technique and holographic interferometry. Am J Orthod 1986;89:25 1-63 https://doi.org/10.1016/0002-9416(86)90041-2
  29. Vanden Bulcke MM, Detmaut LR, Sachdeva RC, Burstone CJ. The center of resistance of anterior teeth during intrusion using the laser reflection technique and holographic interferometry. Am J Orthod Dentofacial Orthop 1986;90:211-20 https://doi.org/10.1016/0889-5406(86)90068-5
  30. Murphy NC, de Alba JA, Chaconas SJ, Caputo M. Experimental force analysis of the contraction utility arch wire. Am J Orthod 1982;82:411-7 https://doi.org/10.1016/0002-9416(82)90190-7
  31. Lim SJ, Kwak BM, Lee JS. Introduction to finite element analysis. Seoul; Dongmyung publishing: 1993
  32. Cho JH, Lee KS, Park YG.. A finite element analysis of the center of resistance of a maxillary first molar. Korean J Orthod 1993;23: 263-73
  33. Tahk SG, Park YC. A study on craniofacial growth analysis of korean children by the finite element method. Korean J Orthod 1988; 18:343-66
  34. Ahn SJ, Suhr CH. An evaluation of treatment effects of bionator in class ii division 1 malocclusion by finite element method. Korean J Orthod 1996;26:219-32
  35. Lee IS, Sohn BH. A finite element analysis on the effect of the headgear in human maxilla. Korean J Orthod 1985;15:211-27
  36. Ricketts RM, Bench RW, Gugino CF, Hilgers JJ, Schulhof RJ. Bioprogressive therapy. Denver: Rocky mountain; 1979
  37. Moss ML, Skalak R, Patel H, Sen K, Moss-Salentijn L, Shinozuka M, Vilmann H. Finite element method modeling of craniofacial growth. Am J Orthod 1985;87:453-72 https://doi.org/10.1016/0002-9416(85)90084-3
  38. Row J, Ryu YK. Three dimentional force analysis of force system in continuous archwire by finite element method. Korean J Orthod 1996;26: 17-32
  39. Vanden Bulcke MM, Burstone CJ, Sachdeva RC, Dermaut LR. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 1987;91:375-84 https://doi.org/10.1016/0889-5406(87)90390-8
  40. Dermaut LR, Kleutghen JP, De Clerck HJ. Experimental determination of the center of resistance of the upper first molar in a macerated, dry human skull submitted to horizontal headgear traction. Am J Orthod Dentofacial Orthop 1986;90:29-36 https://doi.org/10.1016/0889-5406(86)90024-7
  41. Kim HS, Nahm DS. A finite element and strain gauge analysis on the displacement of craniofacial complex with cervical headgear. Korean J Orthod 1987;17:185-97
  42. Wheeler RC. A textbook of dental anatomy and physiology. 4th Ed. Philadelphia: WB Saunders; 1965
  43. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309 https://doi.org/10.1016/S0002-9416(72)90268-0
  44. Dewel BF. Clinical observarions on the axial inclination of teeth. Am J Orthod Dentofac Orthop 1949;35:98-115 https://doi.org/10.1016/0002-9416(49)90111-6
  45. Kim JS, Jin KH, Hong SJ. A statistical study of clinical crown inclination in korean's naturally occurring optimal occlusion. Korean J Orthod 1992;22:715-33
  46. Choi BT, Yang WS. A roentgenocephalometric study on mesiodistal axial inclination of posterior teeth. Korean J Orthod 1984; 14: 151-60
  47. Noyes HJ, Rushing CH, Sims HA. The angle of axial inclination of human central incisor teeth. Angle Orthod 1943;13:60-1
  48. Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc. 1937;24:1260-70
  49. Andrews LF. Lawrence F. Andrews, DDS on the straight-wire appliance. Interview by Dr. White. J Clin Orthod 1990;26:493-508
  50. Goldson L, Reck JV. Surgical-orthodontic treatment of malpositioned cuspids. J Clin Orthod 1987;21:847-5
  51. Tanne K, Koenig HA, Burstone CJ. Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthop 1988;94:426-31 https://doi.org/10.1016/0889-5406(88)90133-3
  52. Joe BJ, Sohn BH. A finite element analysis of the stress distribution and displacement in human maxilla to rapid. Korean J Orthod 1985;15:43-53
  53. McGuinness N, Wilson AN, Jones M, Middleton J, Robertson NR. Stresses induced by edgewise appliances in the periodontal ligament-a finite element study. Angle Orthod 1992;62: 15-22
  54. Kim JY, Sohn BH. A finite element analysis on the effect of the reverse headgear to the maxillary complex. Korean J Orthod 1985; 15:7-22
  55. Park GH, Sohn BH. The center of resistance of the maxillary anterior segment in the horizontal plane during intrusion by using laser reflection technique. Korean J Orthod 1993;23:619-31
  56. Marcotte MR. Prediction of orthodontic tooth movement. Am J Orthod 1976;69:511-23
  57. Oh MY, Chung KR Kwon YD, Ryu DM, Lee BS. Case report of mini-screw used as intraoral anchorage(I). J Korean Dent Assoc 2000;38: 18-21
  58. Bousquet F, Bousquet P, Mauran G, Parguel P. Use of an impacted post for anchorage. J Clin Orthod 1996;30:261-5
  59. Cho HJ, Kim SH, Lee GB, Kim GY, Choi YH, Song WS, Kwon OS, Lee TY, Park DH. Clinical application of skeletal anchorage system with surgical mini-plate in orthodontic treatment(llI): En masse distalization of mandibular dentition. J Korean Dent Assoc 1999;37:305-9