참고문헌
- Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
- Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature Rev. Microbiol. 3, 238-250 https://doi.org/10.1038/nrmicro1098
- Bulet, P., C. Hetru, J. Dimarcq and D. Hoffmann (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344 https://doi.org/10.1016/S0145-305X(99)00015-4
- Bulet, P., J. Dimarcq, C. Hetru, M. Lagueux, M. Charlet, G. Hegy, A. Van Dorsselaer and J. A. Hoffmann (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893-14897
- Bulet, P., R. Stocklin and L. Menin (2004) Anti-microbial peptides; from invertebrates to vertebrates. Immunol. Rev. 198, 169-184 https://doi.org/10.1111/j.0105-2896.2004.0124.x
- Casteels J. K., T. Capaci, P. Casteels and P. Tempst (1994) Acute transcriptional response of the honeybee peptide antibiotics gene repertoire and required post-translational conversion of the precursor structures. J. Biol. Chem. 269, 28569-28575
- Casteels, P., C. Ampe, F. Jacobs, M. Vaeck and P. Tempst (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387-2391
- Casteels, P., C. Ampe, L. Riviere, J. V. Damme, C. Elicone, M. Fleming, F. Jacobs and P. Tempst (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386 https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
- Chernysh S., S. Cociancich, J. P. Briand, C. Hetru and P. Bulet (1996) The inducible antibacterial peptides of the hemipteran insect palomena prasina-Identification of a unique family of proline-rich peptides and a novel insect defensin. J. Insect Physiol. 42, 81-89 https://doi.org/10.1016/0022-1910(95)00085-2
- Cociancich, S., A. Dupont, G. Hegy, R. Lanot, F. Holder, C. Hetru, J. A. Hoffmann and P. Bulet (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sapsucking bug Pyrrhocoris apterus. Biochem. J. 300, 567-575 https://doi.org/10.1042/bj3000567
- Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, C. Hetru and J. A. Hoffmann (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93, 1221-1225
- Hara, S. and M. Yamakawa (1995) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 310, 651-656 https://doi.org/10.1042/bj3100651
- Lehrer R. I., M. Rosenman, S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
- Levashina E. A., S. Ohresser, P. Bulet, J. -M. Reichhart, C. Hetru and J. A. Hoffmann (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694-700 https://doi.org/10.1111/j.1432-1033.1995.694_2.x
- Rees J. A. Moniatte M. and P. Bulet (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem. Mol. Biol. 27, 413-422 https://doi.org/10.1016/S0965-1748(97)00013-1
- Steiner, H., D. Hultmark, A. Engstrom, H. Bennich and H.G. Boman (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248 https://doi.org/10.1038/292246a0