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Abstract Suffix arrays, fundamental full-text index data structures, can be efficiently used where
patterns are queried many times. Although many useful full-text index data structures have been
proposed, their O(nlogn)-bit space consumption motivates researchers to develop more space—efficient
ones. However, their space efficient versions such as the compressed suffix array and the FM-index
have been developed; those can not reduce the practical working space because their constructions are
based on the existing suffix array. Recently, two direct construction algorithms of compressed suffix
arrays from the text without constructing the suffix array have been proposed. In this paper, we
compare practical performance of these algorithms of compressed suffix arrays with that of various
algorithms of suffix arrays by measuring the construction times, the peak memory usages during
construction and the sizes of their final outputs.
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Given a text string 7 of length n over an

AFAH 2 535S (1ITA-2006-(C1090-0602-0011)) alphabet 2 and a pattern string P of length m, the
A8 - rAER AR TS pattern matching problem is finding all instances of
cspark @esslab.hanyang.ac kr . . .. .
289 - 2agoy AR TG g P in T. The studies for efficient pattern matching
mhkim@pusan.ac.kr are divided into two approaches: One is to
3 : W 0Ve T} e . : ;
G %‘%cﬂt}’?%ii“ﬂq a5 preprocess the P in O(m) time and then search in
skylee@tit.ac.kr
389 2ANST AFETEY s O(n) time. The other is to build a full-text index
krkwon@pknu.ac.kr data structure for 7 in O(n) time and then search
29 - Fgtte AAEIHFE TR a5 in O0m) ti
quim@hanyané.ac.kr m m) time.
(Corresponding author®) The latter approach is more appropriate than the
=ERS 20079 19 229 £ :
ormer when we search DNA sequences in full
ANSR ¢ 2004 39 159 d
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genome sequences since the text is much longer
than the pattern and we have to search many
patterns in the text.

Two well-known such index data structures are
suffix trees [1-5] and suffix arrays [6-10]. The
suffix tree is a compacted trie of all suffixes of the
text, and the suffix array is a lexicographically
sorted list of all the suffixes of the text. The suffix
tree can be constructed in O(n) time due to
McCreight [2], Ukkonen [3), Farach [4] and so on.
The suffix array can be also constructed in O(n)
time due to Kim et al. [8], Ko and Aluru [9], and
Karkkiinen and Sanders [10). In addition, Kim et
al. [11], Larsson and Sadakane [12], Manzini and
Ferragina {13), and Schiirmann and Stoye [14] also
proposed construction algorithms which are not
linear time but work practically fast on some
environments.
data

full-text index

structures were developed, their space consumption

Although many useful
(O(nlogn) bits for a string of length n) which is
larger than the text itself motivates researchers to
develop more space efficient ones. Munro et al. [15]
developed a succinct representation of a suffix tree
topology using O(nlogX)-bit working space under
the name of space efficient trees. Grossi and Vitter
[16] developed the compressed suffix array using
Onlog>2)-bit working space. Ferragina and Manzini
[17] suggested opportunistic data structures using
Olnlog¥)-bit working space under the name of

FM-index. Nevertheless, they can’'t reduce the

HEAFHI=EA: A2 2 o8 A 34 F A 5 B (Q0076)

actual working space less than O(nlogn) bits because
their algorithms are based on a suffix array as an
input.

Recently, two algorithms that construct directly
the compressed suffix arrays from given texts in
about OfnlogX)-bit space have been developed. Hon
et al. {18] and Na [19] construct the compressed
suffix arrays without constructing a suffix array
that follows the odd-even scheme of Farach et al.
[45] and Kim et al. [8,11], and the skew scheme of
Karkkdinen and Sanders [10], respectively. In this
paper, we compare practical performance of these
algorithms of compressed suffix arrays with that of
various algorithms of suffix arrays by measuring
the construction times, the peak memory usages
during construction and the sizes of their final
outputs.

We give some previous algorithms of con-
structing suffix arrays in Section 2. In Section 3,
we describe two algorithms that directly construct
the compressed suffix arrays from the text and
discuss some implementation issues. In Section 4,
we show the experimental results and compare the
algorithms described in Section 2.

2. Constructing Suffix Arrays

We first introduce several existing algorithms of
constructing suffix arrays in this section. Table 1
shows the summary of time and space perfor-
mances.

* Manber and Myers [6] presented a radix-sorting

Table 1 Previous Construction Algorithms

category author name vear asymptotig working spgce‘""
(code name) worst-case time (4~byte word integer)
Manber and Myers(6] - 1993 Ofnlogn) 8n bytes
Kim et al. [8] - 2003 On) Oflnlogn) bits
Ko and Aluru [9] - 2003 O(n) 12n bytes + 2.5n bits
] Kirkkiinen and Sanders [10} skew(sa) 2003 On) O(nlogn) bits
suffix array -
Kim et al. [11] odd-even(sa) | 2004 O(nloglogn) O(nlogn) bits
Larsson and Sadakane [12] gsufsort 1999 O(nlogn) 8n bytes
Manzini and Ferragina [13] deep-shallow | 2004 O(nzlogn) 5.03n bytes
Schitrmann and Stoye [14] bpr 2005 o) 8n bytes
Hon et al. [18] odd-even(csa)| 2003 Olnloglog| 1) O(nlog| 1) bits
compressed
suffix array | Na [19] skew(csa) | 2005 oln) O(nloglZ| « log s ) bits

a) The values in this column can be varied under different implementation environments.
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based algorithm. They used the doubling tech-
nique introduced by Karp et al. [20]), which
reduces the number of sorting passes.

+Kim et al. [8) followed Farach et al. [45)'s
odd-even scheme, ie., the recursive divide-and-
conguer scheme that divides the suffixes of T
It first

constructs the suffix array SA, for odd suffixes

into odd suffixes and even suffixes.

of T, and constructs the suffix array SAe for
even suffixes of 7 from SA, and then merges
SA. and SA. to construct the suffix array for all
suffixes of 7. Ko and Aluru [9) and Karkkainen
and Sanders [10] were also based on the
recursive divide-and-conquer scheme. Although
odd-even scheme has some advantages over the
Karkkainen and Sanders’ skew scheme such as
less recursive calls and fast encoding, Kim et
al’s algorithm is slow overall because of the
complicated merging steps. Kim, Jo and Park [11]
adopted a fast odd-even merging algorithm to
Kim et al. [8] using the backward search in
Olnloglogn) time. This is a more practical algo-
rithm that constructs the suffix arrays fast when
the alphabet is fixed-size.

+Ko and Aluru [9] divided the suffixes of T into
S-type and L-type suffixes through a scan of T.
This is a linear time version of Itoh and Tanaka
[21]'s algorithm.

« Karkkdinen and Sanders [10] used skew scheme,
ie, divided the
beginning at positions imod3=0 and the other
imod3=0. The

merging step of this scheme is simple and fast.

suffixes of 7T into suffixes

suffixes beginning at positions

+Larsson and Sadakane [12] used the doubling
technique as in Manber and Myers'. However,
this is a more practical algorithm by removing
unnecessary scanning and idle reorganizing of
already sorted suffixes.

*Manzini and Ferragina [13] combined different
methods to sort suffixes depending on LCP
(Longest Common Prefix) lengths and spend quite
a bit of work on finding suitable settings to
Although the time
complexity is rather poor, it shows best perfor-

achieve fast construction.

mance in many cases.
« Schiirmann and Stoye [14] combined the approach

of refining groups with equal prefixes by recur-
the pull
technique. This algorithm is not complicated and

sively performing radix steps and

very fast with growing average LCP.

3. Constructing Compressed Suffix Arrays

This section introduces the odd-even scheme and
the skew scheme for compressed suffix arrays, and
discusses some implementation issues.

3.1 Succinct representation of ¥ function

We first introduce the ¥ function which is the
main component of the compressed suffix array. A
text T of length n over alphabet ¥ is denoted by
T10..n-11. Let S: for o<i<n-1 denote the ith suffix
of T. The suffix array SA7{0..n-1] of 7 is an
array of integers such that TISA[l.nl is lexi-
cographically the ith smallest suffix of 7. The Wy
function is defined as follows:

SA7'[S4,[]+1] if SA [i]#n-1
Y, =
S4; otherwise

The W7 function can be succinctly represented in
OlnlogY) bits using unary codes so that each Wr
can be retrieved in constant time. However, we
should call rank and select functions many times
which are base operations of succinct representation
to access to ¥r, and the performance of rank and
select functions have much effect on the overall
construction time of compressed suffix arrays. We
import fast rank and select functions proposed in
Kim et al. [22] to minimize the side effects of
function calls. Those are byte-based implemen-
tations for modern computers of which atomic units
are bytes.

3.2 Odd-even scheme

Hon, Sadakane and Sung’s algorithm [18] con-
structed the compressed suffix array directly from
scheme as follows. Let

7 using odd-even

h=|log,logy 7| por p<i<h T is defined as the

string over the alphabet T*, which is formed by
concatenating every 9" characters in T to make one

character. The basic framework of the algorithm is

to use a bottom-up approach to construct \FT’, for

i=h down to 0, thereby obtaining ¥ of 7 in the
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end. Precisely,
1. For i=h

Construct suffix array SAn for T
Y.=Y SA_,

Construct 7" ) from T

2. For i=h-1to 0

(a) Construct \PTO’ for lPT;

(b) Merge \PTJ and \I}TJ into ¥r using back-
ward search algorithm

The compressed suffix array consists of SArf and

T in every step is constructed when the step O is

finished. The entire procedure takes O(nlogloglz‘ n)

time using O(nlogX)-bit working space.
We encountered two problems during implemen-—
ting Hon et al.’s algorithm as follows:

*We could not construct the suffix array SAp

using one of generic algorithms since the size of
a character in T" ie., concatenated 2" characters
of T in hth step, may exceed one 4-byte word.
Suppose that 7 of length n=128K=2"" over |>1=2

is given. Then h =‘log 10gIEI ni= 5. The alphabet of

in the 5th step extends to 22 =2%.
So it is beyond the capability of a 4-byte word,
S4

T° (namely, %

and it is impossible to construct 7+ under these
conditions. Moreover, the number of operations
required by stable sorting which is internally
used to construct ¥ functions could be large,
since we sort all characters in stable sorting and
the size of the alphabet is very large. Sometimes,
the size of an alphabet can exceed main-memory
size. (e.g., 2y Both of these problems are due to
exponentialiy increased size of concatenated cha-
racters.

To remedy this, we adapt the encoding process
for reducing the size of a character in T We
use a long long integer type (8 bytes) supported
in the ISO C99 standard temporarily when the

- 32
size of a character exceeds 2™

Hon et al's algorithm uses an O(n+|Z|)-bit
auxiliary data structure for efficient rank queries

to improve backward search algorithm from

Olnlogn) time to Of(nloglogY) time. The back-
ward search algorithm performs rank queries for
characters to find patterns within the text. The
rank queries in Hon et al.'s are based on specific
ranges of the W function. If the length of range
is smaller than log|3}, the required rank can be
found in O(oglog|3]) time by performing simple
binary searching. Otherwise, the auxiliary data
structure is needed to support Ofloglog|X|)-time
backward search step. However, it is difficult to
implement the auxiliary data structure since it
supports perfect hashing {23] and log-logarithmic
worst-case range queries [24]. We did not use
auxiliary data structures but perform binary
searching in all cases.

We implemented these alternatives in order not
to decrease the inherent performance as carefully as
possible.

3.3 Skew scheme

Na [19]'s algorithm used a bottom-up approach
similar with Hon et al.'s except that it used skew

scheme instead of odd-even scheme. The entire

O(nloglz|-log, n)

procedure takes O(n) time using

-bit working space. This algorithm basically uses
encoding process and has |10g3 logIXI nI steps, which

is smaller than Hon et al.’s |10g2 log|>3| n| steps. We
had nothing particular to consider alternatives

during implementing this algorithm.

4. Experimental Results

In this section, we show some experimental
results comparing five algorithms for constructing
suffix arrays (i.e., skew(sa), odd-even(sa), gsufsort,
deep-shallow and bpr) with two algorithms for
constructing compressed suffix arrays (e, odd-
even(csa) and skew(csa)) described in Table 1.
Skew(sa)V, qsufsort?), deep-shallow® and bprd) are
provided by each authors, and odd-even(sa), odd-
even(csa) and skew(csa) are implemented by our-

selves. We measure the construction times, peak

1) http://www.mpi-inf.mpg.de/~sanders/programs/suffix/
2) http://www.larsson.dogma.net/research.html

3) http://www.mfn.unipmn.it/~manzini/lightweight/

4) http://bibiserv.techfak. uni-bielefeld.de/bpr/
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memory usages during construction, and the sizes
of final outputs on a machine equipped a 3.0Ghz
Intel Pentium IV with 512MB main memory. The
machine is operated by Linux (Fedora Core 4) and
we use gec/g++ for compilation. The extra program®
is used to track the algorithm’s memory usages. In
all experiments, we used random strings which are
varied in lengths 1M, 5M, and 10M, and the size of
alphabets 8 and 20.

Z=8
160 v
odd-even(say 1
140 b skew(sa) === _
qsufsort =mEa B
deep-shaliow et
120 | bpr == ]
o odd-even(csa) =2 v
E 100 b skew(csa) .
E=1
8 g
£ 80 - .
‘g 60 .
a0
20
) P m S
1 5 10
text iength{M)
|£=20
160 T
odd-even(sa) C—— n
140 skew(sa) =) i
qsufsort
deep-shaliow =
120 |- bpr ==
w odd-even(csa)
g 100 skew(csa)
£
§ 80 -
=4
g 60
40
20
B el ] Ol
o Ba > 2% %, @
1 5 10
text length(M)

Figure 1 Construction time of suffix arrays and
compressed suffix arrays when |Z!{=8 and
|=1=20.

Figure 1 shows the construction times of algo-
rithms. The constructions of compressed suffix
arrays are much slower than the constructions of
suffix arrays in all cases. Odd-even(csa) is about 2
times slower than skew(csa) since the additional
encoding steps and stable sorting operations des-—

cribed in Section 3.2 takes much time.

5) http://prj.softpixel.com/med/
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odd-even({sa) C——
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skew(csa)

o
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T

ORI

peak memory usage({Mb)
£ (=2}
o o
]

N
o

text length(M)
Figure 2 Peak memory usages during constructing

suffix arrays and compressed suffix arrays
when |X]=8 and |X[=20.

Figure 2 shows the peak memory usages which
are maximum working spaces during constructing
each algorithm. Odd-even(csa) and skew(csa) uses
similar working space when |Z|=8 and odd-even
(csa) uses a little smaller working space than
skew(csa) by 11~15% |$1=20. However,
both of them require much space than most of

when

suffix arrays in most cases.
Figure 3 shows the sizes of suffix arrays and
compressed suffix arrays when all construction

steps are finished. We measure only pos array in

suffix arrays, and SAT" and ¥ functions of all steps
in compressed suffix arrays. The size of odd-even
(csa)’s is a little larger than others, and the size of
skew(csa)’s is similar with that of suffix arrays
when |X[=8 However, the sizes of two com-
pressed suffix arrays are increasingly larger than
that of suffix arrays with large alphabets. Although
compressed suffix arrays are proposed for space

efficiency, construction algorithms of compressed
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1Z=8
50 '
odd-even(sa) ——
g skew(sa) coEx0
$ qsufsort EZ=m
§ 40 deep
bpr ——=
< odd-even(csa) £==0
% 30 skew(csa)
% 20
g 10
8
o«
0
text length(M)
1Z)=20
50 ‘
odd-even(sa) C——
g skew(sa) [ZZER
< qsufsort
% 40 deep
8 bpr C==1
x odd-even{csa) ===
§ 30 skew(csa)
8
g 20
5 10
2
‘B
0

text length(M)
Figure 3 Size of sorted arrays for suffix arrays and
compressed suffix arrays when |3|=8 and

[321=20.

suffix arrays require much space as well as much
construction time than those of suffix arrays, using

Of(nlogn)-bit working space.

5. Conclusion

The complexity in time and space of compressed
suffix arrays is about O(n) and O(nlog|Z|)bits. On
the other hand in suffix arrays, time complexity is
more than O(n) and O(nlogn) bits are required for
space. As it can see from the above, compressed
suffix arrays are Dbetter than suffix arrays,
theoretically. However, we encountered to practical
problems while implementing the compressed suffix
array. Their makeshift alternatives require much
resource than suffix arrays and consequently reduce
practical performance of the compressed suffix
array. Therefore, compressed suffix arrays still
remain to be researched to apply to practical

conditions.
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