DOI QR코드

DOI QR Code

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design

직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발

  • 조창근 (경북대학교 건설공학부)
  • Published : 2007.04.30

Abstract

In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

본 연구에서는, 기존 철근 콘크리트 구조물에 적용된 직접 변위-기반 설계법을 적용 FRP 피복 보강된 성능개선 콘크리트 부재에 대한 정밀 비선형 휨 해석 및 내진성능설계의 구체적 알고리즘을 제시하였다. 비선형 휨 해석의 정밀 예측을 위하여 콘크리트 및 FRP 복합재료의 다축 구성관계를 고려하였으며, Chopra 등 (1999)이 제안한 직접 변위-기반 설계법(DDM)을 개선하여 철근콘크리트 기둥에 대한 성능개선을 위한 FRP 피복 보강을 위한 성능설계 알고리즘을 제시하였다. 제시된 직접 변위-기반 설계법은, 변위계수법과 비교하여, 비선형 거동이 큰 경우에도 목표 변위 성능 값에 대한 정확한 추정을 해준다. 이는 변위계수법이 항복 이전의 유효탄성계수를 사용하는 반면, 직접 변위-기반 설계법은 유효탄할선탄성계수를 고려하고 있어, 목표 변위에 따른 성능설계 평가에 있어서 보다 높은 연성비의 거동을 반영하고 있기 때문인 것으로 평가된다.

Keywords

References

  1. 조창근 등, 3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델, 콘크리트학회 논문집, 제16권 4호, 2004, pp. 501-509
  2. 조창근, 3차원 구성관계를 고려한 FRP 콘크리트의 비선형모델, 대한토목학회 논문집, 제24권 4A호, 2004, pp. 789-796
  3. Applied Technology Council (ATC), Seismic Evaluation and Retrot of Concrete Building, Report ATC-40, Redwood City, California, 1996
  4. Calvi, G.M., Kingsley, G.R., Displacement-based Seismic Design of Multi- Degree-of-Freedom Bridge Structures, Earthquake Engineering and Structural Dynamics, Vol. 24, 1995, pp. 1247-1266 https://doi.org/10.1002/eqe.4290240906
  5. Cho, C.G. et al., 'Analysis Model of Concrete- Filled FiberReinforced Polymer Tubes Based on the Multi-Axial Constitutive Laws,' Journal of Structural Engineering, ASCE, Vol. 131, No.9, 2005, pp. 1426-1433 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1426)
  6. Cho, C.G. et al., 'Flexural Model for FRP Concrete Structural Members using Three-Dimensional Constitutive Law of Concrete,' Engineering Structures, in press, 2007
  7. Chopra. A.K. and Goel, R.K., 'Direct Displacement- Based Design: Use of Inelastic Design Spectra versus Elastic Design Spectra,' Earthquake Spectra, Vol. 17, No.1, 2001, pp. 47-64 https://doi.org/10.1193/1.1586166
  8. Fajfar, P., 'Capacity Spectrum Method based on Inelastic Demand Spectra,' Earthquake Engineering and Structural Dynamics, Vol. 28, 1999, pp. 979-993 https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  9. Federal Emergency Management Agency (FEMA), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report FEMA 273 (Guidelines) and Report 274 (Commentary), Washington, D.C., 1997
  10. Federal Emergency Management Agency (FEMA), Standard and Commentary for the Seismic Rehabilitation of Buildings, Report FEMA 356, Washington, D.C., 2000
  11. Freeman, S.A., 'Development and use of capacity spectrum method,' Paper No. 269. The 6th US National Conference on Earthquake Engineering, EERl, Seattle, Washington, 1998
  12. Freeman, S.A., Nicoletti, J.P. and Tyrell, J.V., 'Evaluations of Existing Buildings for Seismic Risk, A case study of Puget Sound Naval Shipyard,' Proceedings of the 1st Us. National Conf. on Earthquake Engineering, Bremerton, Washington, 1975, pp. 113-1220
  13. Hsieh, S.S., Ting, E.C. and Chen, W.F., 'An elasticfracture model for concrete,' ASCE Proc. 3d Eng. Mech. Div. Spec. Conf., 1979, pp. 437-440
  14. Kowalsky, M.J., Priestley, M.J.N. and MacRae, G.A., 'Displacement-based Seismic Design of RC Bridge Columns in Seismic Regions,' Earthquake Engineering and Structural Dynamics, Vol. 24, 1995, pp. 1623-1643 https://doi.org/10.1002/eqe.4290241206
  15. Mander, J.B., Priestley, M.J.N., and Park, R., 'Theoretical stress-strain model for confined concrete,' J. Structural Engineering, ASCE, 114(8), 1988
  16. Newmark, N.M. and Hall, W.J., Earthquake Spectra and Design, EERI Monograph Series, Earthquake Engineering Research Institute, Oakland, California
  17. Priestley, M.J.N., Seible, F. and Calvi, G.M., Seismic Design and Retrofit of Bridges, John Wiley & Sons, New York, 1996
  18. Saenz, L.P., Discussion of equation for the stress- strain curve of concrete by Desayi and Krishman, Journal of ACI, 61(9), 1964

Cited by

  1. Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model vol.25, pp.5, 2013, https://doi.org/10.4334/JKCI.2013.25.5.529