DOI QR코드

DOI QR Code

Endoplasmic Reticulum Signaling for Recombinant-protein Production

재조합 단백질 생산을 위한 소포체 신호전달

  • Goo, Tae-Won (Department of Agricultural Biology, Rural Development Administration) ;
  • Yun, Eun-Young (Department of Agricultural Biology, Rural Development Administration) ;
  • Kang, Seok-Woo (Department of Agricultural Biology, Rural Development Administration) ;
  • Kwon, Ki-Sang (Department of Anatomy, College of Medicine, Chungnam National University) ;
  • Kwon, O-Yu (Department of Anatomy, College of Medicine, Chungnam National University)
  • 구태원 (농업과학기술원 농업생물부) ;
  • 윤은영 (농업과학기술원 농업생물부) ;
  • 강석우 (농업과학기술원 농업생물부) ;
  • 권기상 (충남대학교 의과대학 해부학교실) ;
  • 권오유 (충남대학교 의과대학 해부학교실)
  • Published : 2007.06.25

Abstract

The endoplasmic reticulum (ER) is an important intracellular organelle for folding and maturation of newly synthesized transmembrane and secretory proteins. The ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. The ER has evolved stress response both signaling pathways the unfolded protein response (UPR) to cope with the accmulation of unfolded or misfolded proteins and ER overload response (EOR). Accumulating evidence suggests that, in addition to responsibility for protein processing, ER is also an important signaling compartment and a sensor of cellular stress. In this respect, production of bio-functional recombinant-proteins requires efficient functioning of the ER secretory pathway in host cells. This review briefly summarizes our understanding of the ER signaling developed in the recent years to help of the secretion capacities of recombinant cells.

ER-Golgi 분비 경로를 통해서 정확한 구조를 가지면서 post-translational modification 과정을 거친 재조합 단백질의 발현을 최대화하는 것은 ER stress반응에 대한 연구의 중요한 계기가 된다. 세포가 스트레스를 받지 않는 상태라도 ER stress signaling은 재조합 단백질의 생산량을 제한하고 품질을 떨어뜨리는 여러 가지 조건을 만들게 된다. ER stress signaling을 막는 여러 가지 방법들이 제시되고 있으며 표 2는 이러한 방법들 중 일부를 나타내고 있다. 일반적으로는 pro-survival 경로에 관련되어 있는 인자를 촉진하고 pro-apoptosis에 관련되어 있는 인자를 억제하는 것들이다. 그러나 ER stress 반응은 매우 복잡하고 적응과 사멸 기작(adaptation and elimination mechanism)의 중간 역할을 하기 때문에 ER stress에 관련된 주요 인자를 산업적으로 응용하기 위해선 이들의 기능에 대해 보다 깊은 연구가 이루어져야 한다. 현재까지 재조합단백질의 생산량을 최대한으로 높이는 방법은 ER stress 반응이 생기지 않도록 fed-batch process를 개선하고 세포 사멸 기작을 조절하며 단백질의 glycosylation 처리를 하는 것이다.

Keywords

References

  1. Baeuerle, P. A. and D. Baltimore. 1988. I-${\kappa}B$: a specific inhibitor of the NF-${\kappa}B$ transcription factor. Science 242, 540-546 https://doi.org/10.1126/science.3140380
  2. Baeuerle, P. A. and V. R. Baichwal. 1997. NF-${\kappa}B$ as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol. 65, 111-137 https://doi.org/10.1016/S0065-2776(08)60742-7
  3. Barone, M. V., A. Y. Crozat, A. Tabaee, L. Philipson and D. Ron. 1994. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8, 453-464 https://doi.org/10.1101/gad.8.4.453
  4. Basu, S. and R. Kolesnick. 1998. Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17, 3277-3285 https://doi.org/10.1038/sj.onc.1202570
  5. Batchvarova, N., X. -Z. Wang and D. Ron. 1995. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 14, 4654-4661
  6. Bause, E. 1983. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 209, 331 https://doi.org/10.1042/bj2090331
  7. Berg, D. T., P. J. Burck, D. H. Berg and B. W. Grinnell. 1993. Kringle glycosylation in a modified human tissue plasminogen activator improves functional properties. Blood 81, 1312-1322
  8. Bertolotti, A., Y. Zhang, L. M. Hendershot, H. P. Harding and D. Ron. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded protein response. Nat Cell Biol. 2, 326-332 https://doi.org/10.1038/35014014
  9. Borys, M. C., D. I. H. Linzer and E. T. Papoustakis. 1994. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by CHO cells in a pH-dependent manner. Biotechnol Bioeng. 43, 505-514 https://doi.org/10.1002/bit.260430611
  10. Braakman, I., J. Helenius and A. Helenius. 1992. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260-262 https://doi.org/10.1038/356260a0
  11. Brewer, J. W. and J. A. Diehl. 2000. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA. 97, 12625-12630 https://doi.org/10.1073/pnas.220247197
  12. Brewer, J. W., L. M. Hendershot, C. J. Sherr and J. A. Diehl. 1999. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci USA. 96, 8505-8510 https://doi.org/10.1073/pnas.96.15.8505
  13. Brimacombe, R. 1995. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 230, 365-383 https://doi.org/10.1111/j.1432-1033.1995.0365h.x
  14. Brostrom, C. O. and M. A. Brostrom. 1998. Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol. 58, 79-125
  15. Bruhat, A, C. Jousse, X. -Z. Wang, D. Ron, M. Ferrara and P. Fafournox. 1997. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein- related gene, at both transcriptional and posttranscriptional levels. J Biol Chem. 273, 17588-17593
  16. Calfon, M., H. Zeng, F. Urano, J. H. Till, S. R. Hubbard, H. P. Harding, S. G. Clark and D. Ron. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92-96 https://doi.org/10.1038/415092a
  17. Carlson, S. G., T. W. Fawcett, J. D. Bartlett, M. Bernier and N. J. Holbrook. 1993. Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Mol Cell Biol. 13, 4736-4744 https://doi.org/10.1128/MCB.13.8.4736
  18. Chapman, A. E. and J. C. Calhoun. 1988. Effects of glucose starvation and puromycin treatment on lipid-linked oligosaccharide precursors and biosynthetic enzyme in CHO cells in vivo and in vitro. Arch Biochem Biophys. 260, 320-333 https://doi.org/10.1016/0003-9861(88)90456-0
  19. Chen, C., L. C. Edelstein and C. Gelinas. 2000. The Rel/NF-${\kappa}B$ family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol. 20, 2687-2695 https://doi.org/10.1128/MCB.20.8.2687-2695.2000
  20. Crick, D. C. and C. J. Waechter. 1994. Long-chain cis-isoprenyltransferase activity is induced early in the developmental program for protein N-glycosylation in embryonic rat brain cells. J Neurochem. 62, 247-256 https://doi.org/10.1046/j.1471-4159.1994.62010247.x
  21. DeFrancesco, L., I. E. Scheffler and M. J. Bissell. 1976. A respirant-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem. 251, 4588-4595
  22. DeGracia, D. J., J. M. Sullivan, R. W. Neumar, S. S. Alousi, K. R. Hikade, J. E. Pittman, B. C. White, J. A. Rafols and G. S. Krause . 1997. Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2. J Cereb Blood Flow Metab. 17, 1291-1302 https://doi.org/10.1097/00004647-199712000-00004
  23. Dorner, A. J. and R. J. Kaufman. 1994. The levels of endoplasmic reticulum proteins and ATP affect folding and secretion of selective proteins. Biologicals 22, 103-112 https://doi.org/10.1006/biol.1994.1016
  24. Dorner, A. J., L. C. Wasley and R. J. Kaufman. 1992. Over-expression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 11, 1563-1571
  25. Doyon, Y., W. Home, P. Daull and D. LeBel. 2002. Effect of C-domain Nglycosylation and deletion on rat pancreatic $\alpha$ -amylase secretion and activity. Biochem J. 15, 259-264
  26. Dube, P., G. Bacher, H. Stark, F. Mueller, F. Zemlin, M. van Heel and R. Brimacombe. 1998. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 ${\AA}$ resolution. J Mol Biol. 279, 403-421 https://doi.org/10.1006/jmbi.1998.1804
  27. Earnshaw, W. C., L. M. Martins and S. H. Kaufmann. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 68, 383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  28. Fiedler, K. and K. Simons. 1995. The role of N-glycans in the secretory pathway. Cell 81, 309-312 https://doi.org/10.1016/0092-8674(95)90380-1
  29. Flescher, A. R., J. Marzowski, W. -C. Wang. and H. V. Raff. 1995. Fluorophorelabeled carbohydrate analysis of immunoglobin fusion proteins: correlation of oligosaccharide content with in vivo clearance profile. Biotechnol Bioeng. 46, 399-407 https://doi.org/10.1002/bit.260460502
  30. Fornace, A. J. Jr., I. Jr. Alamo and M. C. Hollander. 1988. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA. 85, 8800-8804 https://doi.org/10.1073/pnas.85.23.8800
  31. Freedman, R. B., N. J. Bulleid, H. C. Hawkins and J. L. Paver. 1989. Role of protein disulphide-isomerase in the expression of native proteins. Biochem Soc Symp. 55, 167-192
  32. Gawlitzek, M., U. Valley, M. Nimtz, R. Wagner and H. S. Conradt. 1995. Characterisation of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol. 42. 117-131 https://doi.org/10.1016/0168-1656(95)00065-X
  33. Gawlitzek, M., U. Valleeey and R. Wagner. 1998. Ammonium ion and glucosamine dependent increase of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng. 57, 518-528 https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<518::AID-BIT3>3.0.CO;2-J
  34. Gawlitzek, M., T. Ryll, J. Lofgren and M. B. Sliwkowski. 2000. Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng. 68, 637-646 https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<637::AID-BIT6>3.0.CO;2-C
  35. Gething, M. J. and J. Sambrook. 1992. Protein folding in the cell. Nature 355:, 33-45 https://doi.org/10.1038/355033a0
  36. Glacken, M. W. 1988. Catabolic control of mammalian cell culture. Bio/Technology 6, 1041-1050 https://doi.org/10.1038/nbt0988-1041
  37. Grabenhorst, E., P. Schlenke, S. Pohl, M. Nimtz and H. S. Conradt. 1999. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate J. 16, 81-97 https://doi.org/10.1023/A:1026466408042
  38. Gut, A., F. Kappeler, N. Hyka, M. S. Balda, H. P. Hauri and K. Matter. 1998. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J. 17, 1919-1929 https://doi.org/10.1093/emboj/17.7.1919
  39. Hammond, C. and A. Helenius. 1994. Quality control in the secretory pathway:retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol. 126, 41-52 https://doi.org/10.1083/jcb.126.1.41
  40. Harding, H. P., Y. Zhang and D. Ron. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum- resident kinase. Nature 397, 271-274 https://doi.org/10.1038/16729
  41. Harding, H. P., Y. Zhang, A. Bertoloth, H. Zeng and D. Ron. 2000a. PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897-904 https://doi.org/10.1016/S1097-2765(00)80330-5
  42. Harding, H. P., I. I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron. 2000b. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell Biol. 6, 1099-1108
  43. Harrington, A. W., J. Y. Kim and S. O. Yoon. 2002. Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated apoptosis. J Neurosci. 22, 156-166 https://doi.org/10.1523/JNEUROSCI.22-01-00156.2002
  44. Hayter, P. M., E. M. Curling, M. L. Gould, A. J. Baines, N. Jenkins, I. Salmon, P. G. Strange and A. T. Bull. 1993. The effect of dilution rate on CHO cell physiology and recombinant interferon-$\gamma$ production in glucoselimited chemostat cultures. Biotechnol Bioeng. 39, 327-335 https://doi.org/10.1002/bit.260390311
  45. Haze, K., H. Yoshida, H. Yanagi, T. Yura and K. Mori. 1999 Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 10, 3787-3799 https://doi.org/10.1091/mbc.10.11.3787
  46. Hendrick, J. P. and F. U. Hartl. 1993. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 62, 349-384 https://doi.org/10.1146/annurev.bi.62.070193.002025
  47. Hirschberg, C. B., P. W. Robbins and C. Abeijon. 1998. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 67, 49-69 https://doi.org/10.1146/annurev.biochem.67.1.49
  48. Hooker, A. D., N. H. Green, A. J. Baines, A. T. Bull, N. Jenkins, P. G. Strange and D. C. James. 1999. Constraints on the transport and glycosylation of recombinant IFN-in CHO and insect cells. Biotechnol Bioeng. 63, 559-572 https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<559::AID-BIT6>3.0.CO;2-L
  49. Imperiali, B. and K. W. Rickert. 1995. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA. 92, 597
  50. Irani, N., M. Wirth, J. van den Heuvel and R. Wagner. 1999. Improvement of the primary metabolism of cell culture by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng. 66, 238-246 https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6
  51. Iwawaki, T., A. Hosoda, T. Okuda, Y. Kamigori, C. Nomura-Furuwatari, Y. Kimata, A. Tsuru and K. Kohno. 2001. Translational control by the ER transmembrane kinase/ ribonuclease IRE1 under ER stress. Nat Cell Biol. 3, 158-164 https://doi.org/10.1038/35055065
  52. Jenkins, N., P. Castro, S. Menon, A. Ison and A. Bull. 1994. Effect of lipid supplements on the production and glycosylation of recombinant interferon-$\gamma$ expressed in CHO cells. Cytotechnology 15, 209-215 https://doi.org/10.1007/BF00762395
  53. Jones, P. L., D. Ping and J. M. Boss. 1997. Tumor necrosis factor $\alpha$ and interleukin-1 regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-$\beta$ and NF-${\kappa}B$. Mol Cell Biol. 17, 6970-6981 https://doi.org/10.1128/MCB.17.12.6970
  54. Kawahara, A., Y. Ohsawa, H. Matsumura, Y. Uchiyama and S. Nagata. 1998. Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol. 143, 1353-1360 https://doi.org/10.1083/jcb.143.5.1353
  55. Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparagine- linked oligosaccharides. Annual Rev Biochem. 54, 631-634 https://doi.org/10.1146/annurev.bi.54.070185.003215
  56. Kozutsumi, Y., M. Segal, K. Normington, M. J. Gething and J. F. Sambrook. 1988. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462-464 https://doi.org/10.1038/332462a0
  57. Kunkel, J. P., D. C. H. Jan, J. C. Jamieson and M. Butler. 1998. Dissolved oxygen concentration in serum-free culture affects N-linked glycosylation of monoclonal antibody. J Biotechnol. 62, 55-71 https://doi.org/10.1016/S0168-1656(98)00044-3
  58. Lanks, K. W., J. -P. Gao and E. J. Kasambalides. 1988. Nucleoside restoration of heat resistance and suppression of glucose-regulated protein synthesis by glucose-deprived L929 cells. Cancer Res. 48, 1442-1445
  59. Lee, A. S. 1992. Mammalian stress response: induction of the glucoseregulated protein family. Curr Opin Cell Biol. 4, 267-273 https://doi.org/10.1016/0955-0674(92)90042-B
  60. Marquardt, T. and A. Helenius. 1992. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J Cell Biol. 177, 505-513
  61. May, M. J. and S. Ghosh. 1998. Signal transduction through NF-${\kappa}B$. Immunol Today 19, 80-88 https://doi.org/10.1016/S0167-5699(97)01197-3
  62. Matsumoto, M., M. Miniami, K. Takeda, Y. Sakao and S. Akira. 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395, 143-147 https://doi.org/10.1016/0014-5793(96)01016-2
  63. McCullough, K. D., J. L. Martindale, L. O. Klotz, T. Y. Aw and N. J. Holbrook. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 21, 1249-1259 https://doi.org/10.1128/MCB.21.4.1249-1259.2001
  64. Mercurio, F. and A. M. Manning. 1999. NF-${\kappa}B$ as a primary regulator of the stress response. Oncogene 18, 6163-6171 https://doi.org/10.1038/sj.onc.1203174
  65. Meyer, M., W. H. Caselmann, V. Schluter, R. Schreck, P. H. Hofschneider and P. A. Baeuerle. 1992. Hepatitis B virus transactivator MHBst: activation of NF-${\kappa}B$, selective inhibition by antioxidants and integral membrane localization. EMBO J. 11, 2991-3001
  66. Mori, K. 2000. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451-454 https://doi.org/10.1016/S0092-8674(00)80855-7
  67. Murphy, T. C., N. R. Woods and A. J. Dickson. 2001. Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant Chinese hamster ovary (CHO) cells. Biotechnol Bioeng. 75, 621-629 https://doi.org/10.1002/bit.1190
  68. Nakagawa, T., H. Zhu, N. Morishima, E. Li, J. Xu, B. A. Yankner and J. Yuan. 2000. Caspase-12 mediates endoplasmic- reticulum-specific apoptosis and cytotoxicity by amyloid. Nature 403, 98-103 https://doi.org/10.1038/47513
  69. Nozaki, S., G. W. Jr. Sledge and H. Nakshatri. 2001. Repression of GADD153/CHOP by NF-kB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 20, 2178-2185 https://doi.org/10.1038/sj.onc.1204292
  70. Nyberg, G. B., R. R. Balcarcel, B. D. Follstad, G. Stephanopoulos and D. I. C. Wang. 1999. Metabolic effects on recombinant interferon-glycosylation in continuous culture of CHO cells. Biotechnol Bioeng. 62, 336-347 https://doi.org/10.1002/(SICI)1097-0290(19990205)62:3<336::AID-BIT10>3.0.CO;2-N
  71. Ozturk, S. S., M. R. Riley and B. O. Palsson. 1992. Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng. 39, 418-431 https://doi.org/10.1002/bit.260390408
  72. Pahl, H. L. and P. A. Baeuerle. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-${\kappa}B$. EMBO J. 14, 2580-2588
  73. Pahl, H. L. and P. A. Baeuerle. 1996. Activation of NF-${\kappa}B$ by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett. 392, 129-136 https://doi.org/10.1016/0014-5793(96)00800-9
  74. Pahl, H. L. and P. A. Baeuerle. 1997. The ER-overload response: activation of NF-${\kappa}B$. Trends Biochem Sci. 22, 63-67 https://doi.org/10.1016/S0968-0004(96)10073-6
  75. Pahl, H. L., M. Sester, H. G. Burgert and P. A. Baeuerle. 1996. Activation of transcription factor NF-${\kappa}B$ by the adenovirus E3/19K protein requires its ER retention. J Cell Biol. 132, 511-522 https://doi.org/10.1083/jcb.132.4.511
  76. Petch, D. and M. Butler. 1994. Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilisation. J Cell Physiol. 161, 71-76 https://doi.org/10.1002/jcp.1041610110
  77. Plemper, R. K. and D. H. Wolf. 1999. Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol Biol Rep. 26, 125-130 https://doi.org/10.1023/A:1006913215484
  78. Price, B. and C. Calderwood. 1992. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 52, 3814-3817
  79. Rao, R. V., E. Hermel, S. Castro-Obregon, G. del Rio, L. M. Ellerby, H. M. Ellerby and D. E. Bredesen. 2001. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem. 276, 33869-33874 https://doi.org/10.1074/jbc.M102225200
  80. Rearick, J. I., A, Chapman and S. Kornfeld. 1981. Glucose starvation alters lipidlinked oligosaccharide biosynthesis in CHO cells. J Biol Chem. 256, 6255-6261
  81. Reitzer, L. J., B. M. Wice and D. Kennell. 1979. Evidence that glutamine, not sugar, is the major source for cultured HeLa cells. J Biol Chem. 254, 2669-2676
  82. Rijcken, W. R., B. Overdijk, D. H. Van den Eijnden and W. Ferwerda. 1995. The effect of increasing nucleotide- sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem J. 305, 865-870 https://doi.org/10.1042/bj3050865
  83. Samali, A., H. Nordgren, B. Zhivotovsky, E. Peterson and S. Orrenius. 1999. A comparative study of apoptosis and necrosis in HepG2 cells: oxidantinduced caspase inactivation leads to necrosis. Biochem Biophys Res Commun. 255, 6-11 https://doi.org/10.1006/bbrc.1998.0139
  84. Schroder, M. and P. Friedl. 1997. Over-expression of recombinant human antithrombin III in CHO cells results in malformation and decreased secretion of recombinant protein. Biotechnol Bioeng. 53, 547-559 https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<547::AID-BIT2>3.0.CO;2-M
  85. Shamu, C. E. and P. Walter. 1996. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028-3039
  86. Shen, X., R. E. Ellis, K. Lee, C. Y. Liu, K. Yang, A. Solomon, H. Yoshida, R. Morimoto, D. M. D. M. Kurnit, K. Mori and R. J. Kaufman. 2001. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893-903 https://doi.org/10.1016/S0092-8674(01)00612-2
  87. Sidrauski, C. and P. Walter. 1997. The transmembrane kinase Ire1p is a sitespecific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031-1039 https://doi.org/10.1016/S0092-8674(00)80369-4
  88. Sok, J., X. Z. Wang, N. Batchvarova, M. Kuroda, H. Harding and D. Ron. 1999. CHOP-dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol. 19, 495-504 https://doi.org/10.1128/MCB.19.1.495
  89. Srivastava, S. P., K. U. Kumar and R. J. Kaufman. 1998 Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double- stranded RNA-dependent protein kinase. J Biol Chem. 273, 2416-2423 https://doi.org/10.1074/jbc.273.4.2416
  90. Tachibana, H., K. Taniguchi, Y. Ushio, K. Teruya, K.Osada and H. Murakami. 1994. Changes of monosaccharide availability of human hybridoma lead to alteration of biological properties of human monoclonal antibody. Cytotechnology 16, 151-157 https://doi.org/10.1007/BF00749902
  91. Tang, B., T. M. Chiang, D. D. Brand, M. L. Gumanovskaya, J. M. Stuart, A. H. Kang and L. K. Myers. 1999. Molecular definition and characterization of recombinant bovine CB8 and CB10: immunogenicity and arthritogenicity. Clin Immunol. 92, 256-264 https://doi.org/10.1006/clim.1999.4755
  92. Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk and P. A. Baeuerle. 1995. Phosphorylation of human I-B-on serines 32 and 36 controls I-B-proteolysis and NF-${\kappa}B$ activation in response to diverse stimuli. EMBO J. 14, 2876-283
  93. Travers, K. J., C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman and P. Walter. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258 https://doi.org/10.1016/S0092-8674(00)80835-1
  94. Urano, F., X. Wang, A. Bertolotti, Y. Zhang, P. Chung, H. P. Harding and D. Ron. 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666 https://doi.org/10.1126/science.287.5453.664
  95. Waldman, B. C., C. Oliver and S. S. Krag. 1987. A clonal derivative of tunicamycin-resistant CHO cells with increased N-acetylglucosamine-phosphate transferase activity has altered asparagine-linked glycosylation. J Cell Physiol. 131, 302-317 https://doi.org/10.1002/jcp.1041310303
  96. Wang, C. Y., M. W. Mayo, R. G. Korneluk, D. V. Goeddel and A. S. Jr. Baldwin. 1998. NF-${\kappa}B$ antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683 https://doi.org/10.1126/science.281.5383.1680
  97. Wang, X. -Z., B. Lawson, J. W. Brewer, H. Zinszner, A. Sanjay, L. J. Mi, R. Boorstein, G. Kreibich, L. M. Hendershot and D. Ron. 1996. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol. 16, 4273-4280 https://doi.org/10.1128/MCB.16.8.4273
  98. Wang, X. Z., M. Kuroda, J. Sok, N. Batchvarova, R. Kimmel, P. Chung, H. Zinszner and D. Ron. 1998. Identification of novel stress-induced genes downstream of CHOP. EMBO J. 17, 3619-3630 https://doi.org/10.1093/emboj/17.13.3619
  99. Ye, J., R. B. Rawson, R. Komuro, X. Chen, U. P. Dave, R. Prywes, M. S. Brown and J. L. Goldstein. 2000. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6. 1355-1364 https://doi.org/10.1016/S1097-2765(00)00133-7
  100. Yoshida, H., T. Okada, K. Haze, H. Yanagi, T. Yura, M. Negishi and K. Mori. 2000. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 20, 6755-6767 https://doi.org/10.1128/MCB.20.18.6755-6767.2000
  101. Yoshida, H., T. Okada, K. Haze, H. Yanagi, T. Yura, M. Negishi and K. Mori. 2001a. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors $6\alpha$and $6\beta$ that activates the mammalian unfolded protein response. Mol Cell Biol. 21, 1239-1248 https://doi.org/10.1128/MCB.21.4.1239-1248.2001
  102. Yoshida, H., T. Matsui, A. Yamamoto, T. Okada and K. Mori. 2001b. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891 https://doi.org/10.1016/S0092-8674(01)00611-0
  103. Yoneda, T., K. Imaizumi, K. Oono, D. Yui, F. Gomi, T. Katayama and M. Tohyama. 2001. Activation of caspase- 12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. 276, 13935-13940 https://doi.org/10.1074/jbc.M010677200
  104. Zapun, A., C. A. Jakob, D. Y. Thomas and J. J. Bergeron. 1999 Protein folding in a specialized compartment: the endoplasmic reticulum. Struct Fold Des. 7, R173-R182 https://doi.org/10.1016/S0969-2126(99)80112-9
  105. Zhan, Q., S. Fan, M. L. Smith, I. Bae, K. Yu, I. Jr. Alamo, P. M. O'Connor and A. J. Jr. Fornace. 1996. Abrogation of p53 function affects gadd153 gene responses to DNA base-damaging agents and starvation DNA. Cell Biol. 15, 806-815
  106. Zhang, C., J. Kawauchi, M. T. Adachi, Y. Hashimoto, S. Oshiro, T. Aso and S. Kitajima. 2001. Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun. 289, 718-724 https://doi.org/10.1006/bbrc.2001.6044
  107. Zinszner, H., M. Kuroda, X. Z. Wang, N. Batchvarova, R. Lighfoot, H. Remotti, J. Stevens and D. Ron. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 892-995