DOI QR코드

DOI QR Code

Optimal Culture Conditions on the Tyrosinase Inhibitor Production by Actinomycetes F-97

방선균 F-97에 의한 Tyrosinase 저해제 생성 최적 배양 조건

  • Bang, Byung-Ho (Division of Food Science, Eulji Univesity) ;
  • Rhee, Moon-Soo (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jin-O (Department of Microbial Engineering, Konkuk University) ;
  • Yi, Dong-Heui (Department of Microbial Engineering, Konkuk University)
  • 방병호 (을지대학교 식품과학부) ;
  • 이문수 (한국생명공학연구원) ;
  • 김진오 (건국대학교 미생물공학과) ;
  • 이동희 (건국대학교 미생물공학과)
  • Published : 2007.06.25

Abstract

A Actinomycetes F-97 producing tyrosinase inhibitor was isolated from soil samples. The optimum culture condition for 쇼rosinase inhibitor production was investigated and the results were as follows. The best carbon source for tyrosinase inhibitor production was shown as soluble starch, the optimum concentration was 3.0%. The best nitrogen source for tyrosinase inhibitor production was shown as peptone, the optimum concentration was 0.36%. As effect of metal ions on the production of tyrosinase inhibitor, K$_2$HPO$_4$ was shown the best and the optimum concentration was 0.1 mM. The optimum pH and temperature was shown 7.0 and 30${\circ}$C, respectively. And the highest tyrosinase inhibitor production was observed at 70hr cultivation under optimum conditions in jar fermentor scale.

토양으로부터 tyrosinase 저해제를 생산하는 방선균 F-97을 분리하여 이 균주로부터 tyrosinase 저해제 생산을 위한최적 조건을 검토하였다. 그 결과는 다음과 같다. 탄소원으로는 soluble starch가 가장 좋았으며, 그 최적 농도는 3.0%였다. 질소원으로는 유기질소원인 peptone이 가장 좋았으며 최적 농도는 0.36%로 나타났다. 무기염으로 K$_2$HPO$_4$가 가장 좋았으며 최적농도는 0.1 mM이었다. 최적온도 30${\circ}$C와70시간의 jar fermentor 내에서 배양 시 최고의 tyrosinase 저해제생산성을 나타내었다.

Keywords

References

  1. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2, 455-475 https://doi.org/10.2307/1266454
  2. Cabanes, R. S. 1988. Toxicology and carcinogenesis studies of 4HR in F344/N ratsand B6CF1 mice. National toxicology program, NIH publication, No. 88
  3. Choi, S. Y., N. J. Kang and H. C. Kim. 2006. Inhibitory effects of root extracts on melanin biosynthesis in Rodgersia podophylla a. Gray. Korean J. Medicinal Crop Sci. 14, 27-30
  4. Han, D. S., S. W. Jung, S. J. Kim, S. H. Kim and B. H. Ahn. 1996. Effect of tyrosinase inhibitors on the melanogenesis. Korean J. food Sci. Technol. 28, 1089-1094
  5. Ishihara, Y., M. Oka, M. Tsunakawa, K. Tomita, M. Hatori, H. Yamamoto, H. Kamei, T. Miyaka, M. Komish and T. Oki. 1991. Melanostatin, a new melanin synthesis inhibitor. J. antibiotics 44, 25-32 https://doi.org/10.7164/antibiotics.44.25
  6. Jung, S. W., N. K. Lee, S. J. Kim and D. S. Han. 1995. Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Tech. 27, 891-896
  7. Kang, H. S., H. R. Kim, D. S. Byum, H. J. Park and J. S. Choi. 2004. Romarinic acid as a tyrosinase inhibitors from Salvia miltiorrhiza. Natural Product Sciences 10, 80-84
  8. Komiyama, K., S. Takamatsu, Y. Takahashi, M. Shinose, M. Hayashi, H. tanaka, Y. Iwai and S. Omura. 1993. New inhibitors of melanogenesis, OH-3984 K1 and K2. J. antibiotics 6, 1520-1225.
  9. Kwak, J. H., U. K. Seo and Y. H. Han. 2001. Inhibitory effect of Mugwort extracts on tyrosinase activity. Korean J. Biotechnol. Bioeng. 16. 220-223
  10. Kwak, J. H., Y. H. Kim, H. R. Chang, C. W. Park and Y. H. Han. 2004. Inhibitory effect of Gardenia fruit extracts on tyrosinase activity and melanogenesis. Kor. J. Biotechnol. Bioeng. 19. 437-440
  11. Kwon, O. S., D. J. Park, C. Y. Lee and C. J. Kim. 1996. Distribution pattern of soil actinomycetes at Cheju. Kor. J. Appl. Microbiol. Biotechnol. 4, 399-403
  12. Lee, C. H., H. K. Chun, Y. B. Seu and Y. H. Koh. 1993. Tyrosinase inhibitor isoflavonoids produced by Streptomyces sp. 20747. Kor. J. Appl. Microbiol. Biotechnol. 21, 139-143
  13. Lee, C. H., M. C. Chung, H. J. Lee, K. H. Lee and Y. H. Kho. 1995. MR304-1, A melanin synthesis inhibitor produced by Trichoderma harzianum. Kor. J. Appl. Microbiol. Biotechnol. 23, 641-646
  14. Lee, H. J., M. K. Lee and I. S. Park. 2006. Characterization of mushroom tyrosinase inhibitor in sweet potato. J. Life Sci. 16, 396-399 https://doi.org/10.5352/JLS.2006.16.3.396
  15. Lee, J. S., J. A. Kim, S. H. Cho, A. R. Son, T. S. Jang, M. S. So, S. R. Chung and S. H. Lee. 2003. Tyrosinase inhibitors isolated from the roots of Glycyrrhiza glabra. L. Kor. J. Pharmacogn. 34, 33-39
  16. Shear, M. C. 1967. Actinomycetes; permanent preservation. In workshop on preservation of microorganism by freezing and freeze-drying. Society for Industrial Microbiology, Arlington, Va
  17. Sung, K. C. and K. J. Kim. 2005. Tyrosinase activated inhibition effect & analysis of Pine-Needles extract. J. Kor. Oil. Chem. Soc. 22, 71-76
  18. Suzuki, K. 1993. Search and discovery of soil microorganism which produce new bioactive substances : Selective isolation of microorganism and their fermentation products. J. Actinomycetol. 7, 107-109 https://doi.org/10.3209/saj.7_107
  19. Yang, M. J., J. S. Lim, H. S. Ahn, M. A. Kim and R. M. Ahn. 1999. Inhibitory effect of Chestnut Bark extracts on tyrosinase activity and melanin biosynthesis. Kor. J. Env. Health Soc. 25, 37-43
  20. Yoneta, A, T. Yamashita, H. Y. Jin, S. Kondo and K. Jimbow. 2004. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma(FAMMM) patients. Melanoma Res. 14, 387-394 https://doi.org/10.1097/00008390-200410000-00009
  21. Hong, J. S. 1996. Analysis of SAS and statistics data. Tamjin Publishing Co