전기융합법을 이용한 phytase 생성 내염성 효모 균주의 개발

Strain Development by Electrofusion between Phytase-producing Yeast and Salt-tolerant Yeast

  • Oh, Chul-Hwan (Department of Food Science and Technology, Kongju National University) ;
  • In, Man-Jin (Department of Human Nutrition and Food Science, Chungwoon University) ;
  • Oh, Nam-Soon (Department of Food Science and Technology, Kongju National University)
  • 발행 : 2007.03.31

초록

내염성 조건에서 phytase를 생성하는 효모 균주를 개발하기 위하여 phytase를 생산하는 효모인 S. cerevisiae CY 균주와 내염성 효모인 Z. rouxii Y-80 균주 사이의 전기적 세포융합을 실시하였다. S. cerevisiae CY 균주의 Z. rouxii Y-80 균주의 배양된 세포를 1.0%의 ${\beta}$-mercaptoethanol로 전처리하고 Tunicase로 세포벽을 분해시킨 후 원형질체를 얻었다. 각 균주의 원형질체는 electrofusion 완충액에 1:1의 비율로 현탁한 후 AC 13V에서 30초간 처리하고 고전압(DC 500 V/100 ${\mu}sec$)을 가하여 전기적 세포융합을 실시하였다. 선별된 융합균주는 NaCl이 10% 첨가된 배지에서 친주들과 비교한 결과 Z. rouxii Y-80 균주보다는 생육면에서 25% 이상 증가하였으며, phytase 활성도는 친주인 S. cerevisiae CY 균주 대비 53%의 생성도를 확인하였다.

키워드

참고문헌

  1. Reddy, N. R., Sathe, S. F., and Salunkhe, D. K. (1982) Phytates in legumes and cereals. Adv. Food Res. 28, 1-92
  2. Kim, Y. H. (1996) Qualities of bread and changes in phytic acid during breadmaking with whole wheat flour. J. Korean Soc. Food Sci. Nutr. 25, 779-785
  3. Sa, J. H., Lee, T. W., Kim, T. W., Park, K. Y., Lee, W., Shin, I.C., Jeong, K. J., Han, K. S., Shim, T. H., and Oh, H. S. (2005) Chemical characteristics and antioxidative effect of small black soybean (Yak-Kong). Rep. Inst. Health & Environ. 16, 53-62
  4. Shamsuddin, A. M. (1995) Inositol phosphates have novel anticancer function. J. Nutr. 125, 725S-732S
  5. Sandberg, A. S. (1994) Antinutrient effects of phytate. Nutrition 18, 429-432
  6. Erdman, J. W. and Poneros-Schneier, A. (1989) Phytic acid interactions with divalent cations in foods and in the gastrointestinal track. Adv. Exp. Med. Biol. 249, 161-171
  7. Zyta, K. (1992) Mould phytases and their application in the food industry. World J. Microbiol. Biotechnol. 8, 467-472 https://doi.org/10.1007/BF01201941
  8. Hamada, A., Yamaguchi, K., Harada, M., Horiguchi, K., Takahashi, T., and Honda, H. (2006) Recombinant, riceproduced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Biosci. Biotechnol. Biochem. 70, 1524-1527 https://doi.org/10.1271/bbb.60039
  9. Leenhardt, F., Levrat-Verny, M. A., Chanliaud, E., and Remesy, C. (2005) Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J. Agric. Food Chem. 53, 98-102 https://doi.org/10.1021/jf049193q
  10. Reale, A., Mannina, L., Tremonte, P., Sobolev, A. P., Succi, M., Sorrentino, E., and Coppola, R. (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. J. Agric. Food Chem. 52, 6300-6305 https://doi.org/10.1021/jf049551p
  11. Jung, J. H., Kang, S. G., Kim, Y. S., and Chung, H. J. (1990) Degradation of phytic acid in Chunhkookjang fermented with phytase producing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 18, 423-428
  12. Choi, S. H., Sung, C., Oh, M. J., and Kim, C. J. (1997) Intergeneric protoplast fusion in Saccharomyces fibuligera and Saccharomyces cerevisiae. J. Ferment. Bioeng. 84, 158-161 https://doi.org/10.1016/S0922-338X(97)82547-0
  13. Seo, S. -W., In, M. -J., and Oh, N. -S. (2005) Production and reaction properties of phytase by Saccharomyces cerevisiae CY strain. J. Korean Soc. Appl. Biol. Chem. 48, 228-232
  14. Oh, N. -S., Shin, D. -B., In, M. -J., Chang, Y. I., and Han, M. (2004) Effects of capsaicin on the growth and ethanol production of Zygosaccharomyces rouxii KFY80 isolated from Gochujang (fermented hot pepper paste). Food Sci. Biotechnol. 13, 749-753
  15. Lambrechts, C., Boze, H., Moulin, G., and Galzy, P. (1992) Utilization of phytate by some yeasts. Biotechnol. Lett. 14, 61- 66 https://doi.org/10.1007/BF01030915
  16. Jo, Y. B., Choi, H. J., Baik, H. S., and Jun, H. K. (1997) Evaluation of optimum conditions for the electrofusion between Lactobacillus sp. JC-7 isolated from Kimchi and Lactobacillus acidophilus 88. Kor. J. Appl. Microbiol. Biotechnol. 25, 121- 128
  17. Quan, C. S., Zhang, L. H., Wang, Y. J., and Ohta, Y. (2001) Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J. Biosci. Bioeng. 94, 419-425
  18. Seo, S. -W. (2007) Production and characterization of phytase from Saccharomyces cerevisiae CY. In M. S. thesis of Kongju National University, Korea
  19. Kim, S., Kim, J. -S., Sapkota, K., Park, I. -S., Cho, M. -G., Park, Y., Chun, H. S., Choi, B. -S., Park, S. -E., Choi, H. -S., Kim, M. -K., and Kim, S. -J. (2006) Electrofusion of yeast cells and their genetic analysis using RAPD-PCR. J. Korean Soc. Appl. Biol. Chem. 49, 186-191
  20. Oh, S. -W., Lee, S. -H., Lee, H. -J., and Han, E. -S. (2006) Studies on the electrofusion applied to the yeast to produce high quantity of organic germanium. Korean J. Food Sci. Technol. 38, 712-716
  21. Oh, I. S., So, S. S., and Kim, H. G. (1998) Optimum conditions of pH and $Ca^{2+}$ concentration for electrofusion of tobacco protoplasts. Korean J. Biotechnol. Bioeng. 13, 399-403