DOI QR코드

DOI QR Code

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea

인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동

  • Yang, Eun-Jin (Marine Environment Research Department, KORDI) ;
  • Choi, Joong-Ki (Department of Oceanography, College of Natural Science Inha University)
  • 양은진 (한국해양연구원 해양환경연구본부) ;
  • 최중기 (인하대학교 자연과학대학 해양과학과)
  • Published : 2007.06.30

Abstract

In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

2001년 8월부터 9월 사이에 인천연안 수역에서 발생된 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동에 대하여 조사하였다. 조사기간 동안 엽록소-$\alpha$ 농도의 분포는 $1.8-19.3\;{\mu}g\;l^{-1}$로 분포 하였으며, 첫 번째 대증식기에 가장 높은 농도를 보였다. 소형 엽록소-${\alpha}({\gt}20\;{\mu}m)$는 대증식기 동안에 엽록소-$\alpha$ 농도의 80% 이상을 차지하였고, 미소형 엽록소-${\alpha}(3-20\;{\mu}m)$ 대증식기 전과 대증식기 후에 전체의 42%를 차지하였으며, 대증식기 사이에는 극미소 엽록소-${\alpha}({\lt}3\;{\mu}m)$에 의해 50% 이상을 차지하는 것으로 나타났다. 식물플랑크톤 군집은 대증식기 사이에는 독립영양 극미소플랑크톤에 의해 우점 하였으며, 대증식기 전과 대증식기 후에는 독립영양 미소편모류에 의해 우점 하였고, 두 번의 대증식기에는 규조류에 의해 높은 우점률을 보였다. 특히 대증식기에 관찰된 규조류의 개체수는 Chaetoceros pseudocrinitus와 Eucampia zodiacus에 의해 50% 이상 우점하였다. 종속영양 원생동물의 탄소량은 $8.2-117.8\;{\mu}gC\;l^{-1}$로 분포하였으며, 식물플랑크톤의 생물량이 가장 높았던 직후에 가장 높게 나타났다. 조사기간 동안 종속영양 원생동물의 상대적인 기여도는 식물플랑크톤의 생물량 및 군집구조에 따라 차이를 보였다. 빈섬모충류와 종속영양 와편모류는 첫 번째와 두 번째 대증식기에 우점 하였으며, 종속영양 원생동물 생물량의 80% 이상을 차지하였다. Protoperidinium spp.에 의해 우점하는 종속영양 유각와편모류는 첫 번째 대증식기에 가장 우점하였으며, Gyrodinium spp.로 구성된 종속영양 무각와편모류는 두 번째 대증식기에 가장 우점 하였다. 그외 Noctiluca scintilla는 첫 번째 대증식기에 식물플랑크톤 소멸에 중요한 역할을 하는 것으로 나타났다. 결과적으로 식물플랑크톤의 대증식기 동안에 종속영양 원생동물 군집은 식물플랑크톤의 생물량 및 군집구 조의 변화에 빠르게 반응하였으며, 이와 같은 결과는 두 군집 사이에 잠재적인 피식-포식자의 관계가 있음을 암시한다. 따라서 조사기간 동안 종속영양 원생동물은 식물플랑크톤 대증식의 소멸과 관련된 중요한 섭식자로서, 식물플랑크톤 군집을 조절하는데 중요한 역할을 하였을 것으로 사료된다.

Keywords

References

  1. 송태윤. 1998. 경기만에서 식물플랑크톤 군집구조와 색소의 월간 변동. 이학석사 학위논문, 인하대학교. 106 p
  2. 양은진. 2001. 인천연안 미소형 및 소형 동물플랑크톤의 생태학적 연구. 이학박사 학위논문, 인하대학교. 286 p
  3. 양은진, 최중기. 2003. 경기만 수역에서 미세생물 군집의 계절적 변동 연구. II. 미소형 및 소형 동물플랑크톤. 한국해양학회지 바다, 8, 78-93
  4. 윤석현, 최중기. 2003. 경기만 동물플랑크톤 군집의 시공간적 분포. 한국해양학회지 바다, 8, 243-250
  5. 이원호, 명금옥, 유영두, 김경길, 정해진. 2005. 금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동. 한국해양학회지 바다, 10, 154-163
  6. 인하대학교 서해연안환경연구센터. 2002. 서해연안환경연구 센터 연구 보고서. 426 p
  7. Archer, S.D., P.G. Verity, and J. Stefels. 2000. Impact of microzooplankton on the progression and fate of the spring bloom in fjords of northern Norway. Aquat. Microb. Ecol., 22, 27-41 https://doi.org/10.3354/ame022027
  8. Banse, K. 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. p. 409-440. In: Primary Productivity and Biogeochemical Cycles in the Sea. eds. by P.G. Falkowski and A.D. Woodhead. Plenum, New York
  9. Bernard, C. and F. Rassoulzadegan. 1994. Seasonal variations of mixotrophic ciliates in the northwest Mediterranean Sea. Mar. Ecol. Prog. Ser., 108, 295-301 https://doi.org/10.3354/meps108295
  10. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar. Ecol. Prog. Ser., 36, 171-175 https://doi.org/10.3354/meps036171
  11. Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, use epifluorescence microscopy an comparison with other procedures. Appl. Environ. Microbiol., 4, 491-498
  12. Choi, J.K. and J.H. Shim. 1986a. The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. I. Environmental characteristics. J. Kor. Soc. Oceanogr., 23, 1-12
  13. Choi, J.K. and J.H. Shim. 1986b. The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. III. Phytoplankton composition, standing crops, tychopelagic plankton. J. Kor. Soc. Oceanogr., 23, 1-12
  14. Claereboudt, M., J. Cote, J. Bonardelli, and J.H. Himmelman. 1994. Seasonal variation in abundance and size structure of phytoplankton in Baie des Chaleurs, southwestern gulf of St. Lawrence, in relation to physical oceanographic conditions. Hydrobiologia, 306, 147-157 https://doi.org/10.1007/BF00016831
  15. Durban, E.G., R.W. Krawiec, and T.J. Smayda. 1975. Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay (USA). Mar. Biol., 32, 271-287 https://doi.org/10.1007/BF00399206
  16. Edler, L. 1979. Phytoplankton and chlorophyll recommendations for biological studies in the Baltic Sea. Baltic Marine Biologists, p. 13-25
  17. Frost, B.W. 1993. A modelling study of processes regulating plankton standing stock and production in the open subarctic Pacific Ocean. Prog. Oceanogr., 32, 17-56 https://doi.org/10.1016/0079-6611(93)90008-2
  18. Hansen, P.J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagic food web. Mar. Ecol. Prog. Ser., 73, 253-261 https://doi.org/10.3354/meps073253
  19. Heinbokel, J.F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations. Mar. Biol., 47, 191-197 https://doi.org/10.1007/BF00395639
  20. Irigoien, X., R. Head, U. Klenke, B. Meyer-Harms, D. Harbour, B. Niehoff, H.J. Hirche, and R. Harris. 1998. A high frequency time series at Weathership M, Norwegian Sea, during the 1997 spring bloom; feeding of adult female Calanus finmarchicus. Mar. Ecol. Prog. Ser., 172, 127-137 https://doi.org/10.3354/meps172127
  21. Jacobson, D.M. 1987. The ecology and feeding biology of thecate heterotrophic dinoflagellates. Ph.D. Thesis Woods Hole Oceanographic Institution/Massachusetts Institute of Technology Joint Program, Woods Hole. 210 p
  22. Jeong, H.J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol., 46, 390-396 https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  23. Jeong, H.J. and M.I. Latz. 1994. Growth and grazing rates of the heterotrophic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser., 106, 173-185 https://doi.org/10.3354/meps106173
  24. Kiorboe, T. 1993. Turbulence, phytoplankton cell-size, and the structure of pelagic food webs. Adv. Mar. Biol., 29, 1-72 https://doi.org/10.1016/S0065-2881(08)60129-7
  25. Lee, W.J. and J.K. Choi. 2000. The roles of heterotrophic protists in the planktonic community of Kyeonggi Bay, Korea. J. Kor. Soc. Oceanogr., 35, 46-55
  26. Lee, W.J., K, Shin, P.G. Jang, M-C. Jang, and N.J. Park. 2005. Summer pattern of phytoplankton distribution at a station in Jangmok Bay. Ocean Sci. J., 40, 109-118 https://doi.org/10.1007/BF03022605
  27. Legendre, L. 1990. The significance of microbial algal blooms for fisheries and for the export of particulate organic carbon in the oceans. J. Plankton Res., 12, 681-699 https://doi.org/10.1093/plankt/12.4.681
  28. Levinsen, H., T.G. Nielsen, and B.W. Hansen. 1999. Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol., 16, 217-232 https://doi.org/10.3354/ame016217
  29. Mackas, D.L., K.L. Denman, and M.R. Abbott. 1985. Plankton patchiness: Biology in the physical vernacular. Bull. Mar. Sci., 37, 652-674
  30. McManus, G.B. and M.C. Ederington-Cantrell. 1992. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Mar. Ecol. Prog. Ser., 87, 77-85 https://doi.org/10.3354/meps087077
  31. Menden-Deuer, S. and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol. Oceangr., 45, 569-579 https://doi.org/10.4319/lo.2000.45.3.0569
  32. Miyaguchi, H., T. Fujiki, T. Kikuchi, V.S. Kuwahara, and T. Toda. 2006. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res., 28, 313-324 https://doi.org/10.1093/plankt/fbi127
  33. Nielsen, T.G. and T. Kiørboe. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. ciliates. Limnol. Oceanogr., 39, 508-519 https://doi.org/10.4319/lo.1994.39.3.0508
  34. Parson, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford. 173 p
  35. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  36. Putt, M. and D.K. Stoecker. 1989. An experimentally determined carbon: volume ratio for marineoligotrichousciliates from estuarine and coastal waters. Limnol. Oceanogr., 34, 1097-1103 https://doi.org/10.4319/lo.1989.34.6.1097
  37. Rassoulzadegan, F. and M. Etienne. 1981. Grazing rate of the tintinnid Stenosoella ventricosa (Clap. & Lachm.) Jorg. on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr., 26, 258-270 https://doi.org/10.4319/lo.1981.26.2.0258
  38. Schluter, L. 1998. The influence of nutrient addition on growth rates of phytoplankton groups, and microzooplankton grazing rates in a mesocosm experiment. J. Exp. Mar. Bio. Ecol., 228, 53-71 https://doi.org/10.1016/S0022-0981(98)00004-5
  39. Sime-Ngando, T., M. Gosselin, S. Roy, and J.P. Chanut. 1995. Significance of planktonic ciliated protozoa in the lower St. Lawrence Estuary: Comparison with bacterial, phytoplankton, and particulate organic carbon. Aquat. Microb. Ecol., 9, 243-258 https://doi.org/10.3354/ame009243
  40. Smetacek, V. 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol., 63, 1-11 https://doi.org/10.1007/BF00394657
  41. Smith, S.L. and P.V.Z. Lane. 1988. Grazing of the spring diatom bloom in the New York Bight by the calanoid copepods Calanus finmarchicus, Metridia lucens and Centropages typicus. Cont. Shelf. Res., 8, 485-509 https://doi.org/10.1016/0278-4343(88)90065-9
  42. Stelfox-Widdicombe, C.E., S.D. Archer, P.H. Burkill, and J. Stefels. 2004. Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring. J. Sea. Res., 51, 37-51 https://doi.org/10.1016/j.seares.2003.04.004
  43. Strom, S.L. and M.W. Strom. 1996. Microplankton growth, grazing, and community composition in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser., 130, 229-240 https://doi.org/10.3354/meps130229
  44. Strom, S.L., M.A. Brainard, J.L. Holmes, and M.B. Olson. 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar. Biol., 138, 355-368 https://doi.org/10.1007/s002270000461
  45. Suzuki, K., A. Tsuda, H. Kiyosawa, S. Takeda, J. Nishioka, T. Saino, M. Takahashi, and C.S. Wong. 2002. Grazing impact of microzooplankton on a diatom bloom in a mesocosm as estimated by pigment-specific dilution technique. J. Exp. Mar. Bio. Ecol., 271, 99-120 https://doi.org/10.1016/S0022-0981(02)00038-2
  46. Tamigneaux, E., M. Mingelbier, B. Klein, and L. Legendre. 1997. Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment(western Gulf of St. Lawrence, Canada). Mar. Ecol. Prog. Ser., 146, 231-247 https://doi.org/10.3354/meps146231
  47. Tiselius, P. and M. Kuylenstierna. 1996. Growth and decline of a diatom spring bloom: phytoplankton species composition, formation of marine snow and the role of heterotrophic dinoflagellates. J. Plankton Res., 18, 133-155 https://doi.org/10.1093/plankt/18.2.133
  48. Verity, P.G. and C. Langdon. 1984. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6, 859-868 https://doi.org/10.1093/plankt/6.5.859
  49. Wassmann, P. 1998. Retention versus export food chains; processes controlling sinking loss from marine pelagic systems. Hydrobiologia, 363, 29-57 https://doi.org/10.1023/A:1003113403096
  50. Yoo, J.K., S.H. Youn, and J.K. Choi. 2006. Temporal fluctuation and ecological characteristics of Noctiluca scintillans (Dinophyceae) in the coastal waters of Incheon, Korea. Kor. J. Environ. Biol., 24, 372-379
  51. Youn, S.H. and J.K. Choi. 2003. Seasonal changes in zooplankton community in the coastal waters off Incheon. J. Kor. Soc. Oceanogr., 38, 111-121

Cited by

  1. Modeling the effect of nutrient enrichment on the plankton population: Validation using mesocosm experiment data vol.23, pp.5, 2011, https://doi.org/10.9765/KSCOE.2011.23.5.358
  2. Characteristic of Seasonal Dynamics of Planktonic Ciliates at Four Major Ports (Busan, Ulsan, Gwangyang and Incheon), Korea vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.217