발표(1)

Wireless Sensor Networks

- 강남대학교 퓨터미디어공학부 조 승 호 -

U 강남대역교

Wireless Sensor Networks

2007.6.28(Thu.) 강남대학교 컴퓨터미디어공학부 조 승 호

त अन्तराज्ञ

Table of Contents

- Overview of a Sensor Node and Wireless Communications
- Proposed Applications of Wireless Sensors
- State of Art of a Sensor Node
- Operating System for Sensor Networks
- What will Wireless Sensor Networks Look Like in the Near Future?

Why Wireless Sensors Now?

- Moore's Law is making sufficient CPU performance available with low power requirements in a small size.
- Research in Materials Science has resulted in novel sensing materials for many Chemical, Biological, and Physical sensing tasks.
- Transceivers for wireless devices are becoming smaller, less expensive, and less power hungry.
- Power source improvements in batteries, as well as passive power sources such as solar or vibration energy, are expanding application options.

3

Overview of a Sensor Node and Wireless Communications

U 강남대역교

Typical Sensor Node Features

- A sensor node has:
 - Sensing Material
 - Physical Magnetic, Light, Sound
 - Chemical CO, Chemical Weapons
 - Biological Bacteria, Viruses, Proteins
 - Integrated Circuitry (VLSI)
 - A-to-D converter from sensor to circuitry
 - Packaging for environmental safety
 - Power Supply
 - Passive Solar, Vibration
 - Active Battery power, RF Inductance

5

이 왕위대리의

Sensor Network Platform

Sensor Network Outline

7

्र अन्ताराण

The 802 Wireless Space

Data Rate (Mbps)

त अन्यत्रम

JWLAN 802.11 & WPAN 8<u>0</u>2.15

Bluetooth^{*}

Market Name	Wi−Fi™	Bluetooth™	ZigBee™	
Standard	802.11b	802.15.1	802.15.4	
Application Focus	Web, Email, Video	Cable Monitoring Replacement Control		
System Resources	1MB+	250KB+	25KB - 50KB	
Battery Life (days)	.5 - 5	1 – 7	100 - 1,000+	
Network Size	32	7	255 / 65,000	
Bandwidth (Kb/s)	11,000+	720	20 - 250	
Transmission Range (meters)	1 – 100	1 - 10+	1 - 100+	
Success Metrics	Speed, Flexibility	Cost, Convenience	Reliability, Power, Cost	

나 강남대학교

IEEE802.15.4 & ZigBee

Application Customer API Security 32-/64-/128-bit encryption Network Star/Mesh/Cluster-Tree MAC PHY 868MHz/915MHz/24GHz Silicon Stack App

ZigBee Alliance

- "the software"
- Network, Security & Application layers
- Brand management

IEEE 802.15.4

- "the hardware"
- Physical & Media Access Control layers

Proposed Applications of Wireless Sensors

11

* ANTS Pilot Project – Haroobang for Disaster management & U-tourism

U 광남대학교

त अमसम्ब

Smart Home / Smart Office

- Sensors controlling appliances and electrical devices in the house.
- Better lighting and heating in office buildings.
- The Pentagon building has used sensors extensively.

Biomedical / Medical

- Health Monitors
 - Glucose
 - Heart rate
 - Cancer detection
- Chronic Diseases
 - Artificial retina
 - Cochlear implants
- Hospital Sensors
 - Monitor vital signs
 - Record anomalies

15

Military

Remote deployment of sensors for tactical monitoring of enemy troop movements.

이 강남대학교

Industrial & Commercial

- Numerous industrial and commercial applications:
 - Agricultural Crop Conditions
 - Inventory Tracking
 - In-Process Parts Tracking
 - Automated Problem Reporting
 - RFID Theft Deterrent and Customer Tracing
 - Plant Equipment Maintenance Monitoring

17

त अन्यायण

State of Art of a Sensor Node

Current Microcontroller suitable for WSN

Manufacturer	Device	RAM	Flash	Active	Sleep	Release	
		(kB)	(kB)	(mA)	$(\mu \mathbf{A})$		
Atmel	AT90LS8535	0.5	8	5	15	1998	
	Mega128	4	128	8	20	2001	
	Mega165/325/645	4	64	2.5	2	2004	
General	PIC	0.025	0.5	19	1	1975	
Instruments							
Microchip	PIC Modern	4	128	2.2	1	2002	
Intel	4004 4-bit	0.625	4	30	N/A	1971	
	8051 8-bit Classic	0.5	32	30	5	1995	
	8051 16-bit	1	16	45	10	1996	
Philips	80C51 16-bit	2	60	15	3	2000	
Motorola	HC05	0.5	32	6.6	90	1988	
	HC08	2	32	8	100	1993	
	HCS08	4	60	6.5	1	2003	
Texas	TSS400 4-bit	0.03	1	15	12	1974	
Instruments	MSP430F14x 16-bit	2	60	1.5	1	2000	
	MSP430F16x 16-bit	10	48	2	1	2004	
Atmel	AT91 ARM Thumb	256	1024	38	160	2004	
Intel	XScale PXA27X	256	N/A	39	574	2004	

19

Current Radio suitable for WSN

Type		Narrowband Wideband					
Vendor	RFM	Chipcon	Chipcon	Nordic	Chipeon	Motorola	Zeevo
Part no.	TR1000	CC1000	CC2400	nRF2401	CC2420	MC13191/92	ZV4002
Max Data rate (kbps)	115.2	76.8	1000	1000	250	250	723.2
RX power (mA)	3.8	9.6	24	18 (25)	19.7	37(42)	65
TX power (mA/dBm)	12 / 1.5	16.5 / 10	19 / 0	13 / 0	17.4 / 0	34(30): 0	65 / 0
Powerdown power (µA)	1	ı	1.5	0.4	1	1	140
Turn on time (ms)	0.02	2	1.13	3	0.58	20	*
Modulation	OOK ASK	FSK	FSK.GFSK	GFSK	DSSS-O-QPSK	DSSS-O-QPSK	FHSS-GFSK
Packet detection	110	110	programmable	yes	yes	yes	yes
Address decoding	no	no	по	yes	yes	yes	yes
Encryption support	no	110	no	no	128-bit AES	no	128-bit SC
Error detection	110	110	yes	yes	yes	yes	yes
Error correction	no	по	no	no	yes	yes	yes
Acknowledgments	no	no	no	no	yes	yes	yes
Interface	bit	byte	packet/byte	packet/byte	packet byte	packet byte	packet
Buffering (bytes)	no	1	32	16	128	133	yes *
Time-sync	bit	SFD/byte	SFD packet	packet	SFD	SFD	Bhietooth
Localization	RSSI	RSSI	RSSI	no	RSSI/LQI	RSSI/LQI	RSSI

ा अभितालच

LIC Development Roadmap

802.15.4 / ZigBee	1st Generation	2nd Generation	3rd Generation
Year of 1st IC	2003	2005	2007
	2 (or more) ICs	SoC solutions	Optimized SoC solutions
Examples	CC2420 + Atmega128 MC13192 + MC9S08GT	CC2430 EM250 (?) MC13213	CC2530 (8051,MSP430, other based???)
Typical BOM	\$6 to \$10	\$4 to \$5	\$2 to \$4
Power: Stand-by Tx / Rx Ref. design Area	3uA 30mA / 32mA 4 – 8 cm ²	0,6 / 0,9uA 25mA / 27mA 2 – 5 cm ²	0,5 / 0,8uA 20mA / 22mA 1 – 3 cm ²
Ref. design Area	4 – 8 cm ²	2 – 5 cm ²	1 – 3

ि अस्तित्रज

Operating System for Sensor Networks

24

이 강남대학교

O/S for Sensor Networks

- 제한된 자원의 사용
 - 프로세싱, 저장, 대역폭, 전력 ...
- 수많은 노드에 뿌려진 Applications
 - 자가 수집
 - 변화하는 네트워크 환경에서의 적응
 - 통신은 기본적인 요소 (ad-hoc, mesh)
- 병목 현상 처리
 - 센싱 데이터와 네트워크 트래픽 등 (scheduling)
- 견고성
 - Critical 한 operation 에 대한 보장
- 응용 계층과 하위 레벨 계층간의 access가 용이성

25

त अन्तराज्ञ

TinyOS

- UC 버클리 대학에서 고안
 - Prof. David Culler & Kris Pister
 - Prof. David Culler -> TinyOS & Intel Research Lab. @ Berkeley
 - Kris Pister -> Dust network (Smart Dust)
 - Key Engineer -> Jason Hill, etc.
- 300개가 넘는 대학 연구소와 산업체에서 사용
- 공개 소프트웨어
- 간단한 운영체제
- 프로그래밍 언어 및 모델 지원
- 서비스 정책

🧷 अनलना

- 2-Level 구조
 - Task
 - 시간에 비종속
 - 오래 수행되는 operation
 - 선점할 수 없고, 선점 될 수 있다.
 - Background computation
 - Events
 - 시간에 종속
 - 짧게 수행되는 operation
 - 선점될 수 없다
 - Task가 수행 중에, interrupt 할 수 있다.

27

्र अन्यकण

- Running One Application
- nesC : pre-processor
- nesC output is a c program file that is compiled and linked

sing gnu gcc tool

이 하다대리퍼

및 광물대학교

What will Wireless
Sensor Networks Look
Like in the Near Future?

이 강남대학교

Large-Scale Deployments

- Sensor networks will grow in size because of:
 - Lower cost
 - Better protocols
 - Advantages of dense networks

Sensing Zone with sensor-coordinator, sensing-collaborators, and backbone nodes

Heterogeneous Sensors

- Homogeneous network of sensors has been the typical assumption, but not the future!!
 - Combining sensors with different functions
 - Hierarchy of sensors a few expensive powerful sensors with more cheap sensors
 - Useful for special communication nodes
 - A few sensor nodes with expensive sensors, such as GPS-equipped sensors

이 광년대학교

Mobile Sensors

- Sensors with Micromachines
- Low-Power Motors that Support Mobility

33

General Purpose Sensors

- Single-purpose network is the typical assumption, but the future!!
 - Sensors for evolving applications
 - Sensors that can adapt to changing objectives
 - More memory and CPU will allow more complex applications
 - Flexibility increases marketability

Overlapping Coverage Areas

- Sensors will be deployed for specific applications, but
 - These deployments will overlap physically
 - Sensors will have different properties
 - Users will want to combine these different sensors for new applications:
 - Temperature sensors for HVAC control
 - Location tracking of employees
 - Combine these for fire rescue operations

35

(O) 되유대리피

Mixture of Wired and Wireless

- Wireless sensors will become a seamless part of larger networks!
 - Combining wired sensors with wireless sensors
 - Wired sensors can have more power
 - Wired sensors can run TCP/IP
 - Accessing wireless sensors through the Internet
 - Need a gateway to translate requests
 - Uploading/downloading information remotely
 - Modifying wireless sensor tasks remotely
 - Increased direct user interaction

이 왕년대학교

감사합니다

질의 및 응답?

