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AN M/G/1 VACATION QUEUE UNDER THE
PM_SERVICE POLICY'!

JIYEON LEE!

ABSTRACT

We consider the PM-service policy for an M/G/1 queueing system in
which the workload is monitored randomly at discrete points in time. If the
level of the workload exceeds a threshold A when it is monitored, then the
service rate is increased from 1 to M instantaneously and is kept as M until
the workload reaches zero. By using level-crossing arguments, we obtain
explicit expressions for the stationary distribution of the workload in the
system.
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1. INTRODUCTION

The P{VI -policy was originally introduced by Faddy (1974) as a releasing policy
for water in a finite dam with Wiener inputs: it starts to release water at a rate
of M per unit time as soon as the level of water reaches a threshold A > 0 and
keeps the release rate constant until the reservoir is empty. Lee and Ahn (1998)
applied this policy to an infinite dam with inputs formed by a compound Poisson
process. In the specific case of M = 1 and A = D, the situation is the same as the
D-policy applied to an M/G/1 queueing system. Bae et al. (2002) modified the
PM-policy and introduced the PM-service policy for an M/G/1 queueing system:
a server is initially idle, but when a customer arrives it starts to work with service
rate 1, meaning that it is getting through its workload at a rate of 1 per unit
time. As soon as the workload exceeds a threshold A > 0, the server increases its
service rate from 1 to M > 1, and continues to serve at rate M until its workload
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is zero again. Bae et al. (2002) obtained the stationary workload distribution
for this policy by using the decomposition technique introduced by Lee and Ahn
(1998) and the level-crossing arguments of Brill and Posner (1977) and Cohen
(1977). Recently Kim et al. (2006) have shown that, if costs are assigned to an
M/G/1 queueing system, there exists an optimal service rate which minimizes
the long-run average cost per unit time under the P){"[ -service policy.

In this paper, we consider a system in which the workload is monitored not
continuously but randomly at discrete points in time. The inter-monitoring times,
denoted by Vi, V3, . . ., are assumed to be independent and identically distributed
(i.i.d.) exponential random variables of rate £. If the workload of the system
exceeds the level A\ when it is monitored, then the server increases its service
rate instantaneously from 1 to M, at which it remains until the server becomes
idle, otherwise the service rate remains at 1. It is assumed that the arrival of
customers follows a Poisson process of rate v > 0, and that the service times
of customers are also i.4.d. random variables, with distribution function G and
mean m.

Notice that, in the special case of £ = oo, our model corresponds to that
introduced by Bae et al. (2002). Randomly monitored queueing systems are
close to queueing systems with multiple vacations and have been studied by
many researchers (Tagaki, 1991). More recently, Kim et al. (2004) presented a
simple approach to finding the stationary workload distribution of M/G/1 queues
with both multiple vacations and D-policy, and Lee and Kim (2007) derived the
stationary distribution of M/G/1 queues under the PM-service policy with a
single vacation.

We will now obtain an explicit formula for the stationary distribution of the
workload by using level-crossing arguments. We will also show that results of
Bae et al. (2002) follow our analysis.

2. ANALYSIS OF THE WORKLOAD PROCESS

Let X = {X(t),t > 0} be the workload process under the service policy de-
scribed in the previous section. The process X is regenerated each time that the
server starts to work. The length of a cycle C is the interval between two suc-
cessive regeneration points. To analyze X, we first decompose it into four Makov
processes and then apply the level-crossing arguments. Let X; be a process ob-
tained from the original process X by connecting the periods during which the
service rate is 1 which start at the beginning of the busy period and end at the
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time of the first exit from (0, A]. Let a second process X be formed by separating
out and connecting together the remainder of the periods of service rate 1 and
similarly a third process X3 is made up of the periods of service rate M. Finally
X4 is formed by connecting the idle periods of the original process X, that is,
X4 = 0. Clearly, all these new processes are regenerative Markov processes. We
will call each separated segment a cycle of each process and use C; to denote the
length of the cycle in X;, 1 = 1,2, 3,4.

Let F; be the stationary distribution function of X; for i = 1,2,3,4 and let F
be the stationary distribution function of X. Since E[Cy4] = 1/v and Fy(z) = 1
for all z > 0, where v is the arriving rate of customers, by applying the renewal
reward theorem (Ross, 1996, p. 133), we can show that, for z > 0,

LElC]

1/v
Elc] 2@ T 1 g

E[CY

Fi(z)+ 8 F3(z) +
where a, ( and 7 are the respective probabilities that the processes X;, X5 and
X3 exist in the cycle of X. Note that E[C] = aE[C1] + BE[C2] + vE[C3] + 1/v.
We can immediately see that

a = G(A),

since there exists a process X; in the cycle of X if and only if the workload brought
by the first customer after the idle period is less than or equals to A. We also
observe that the probability 3 is the same as the probability that the workload
process X crosses over the level A during the cycle C. Let W = {W (t),t > 0} be
the workload (virtual waiting time) process of an ordinary M/G/1 queue with
customers arriving at a rate v and with a distribution function of service times
G of which the mean is m. Several results about the process W are summarized
in the Appendix. Because the process X coincides with W until X upcrosses A
it follows that the probability 8 can be expressed as

,3= 1-Pr{D)\ 20},

where D) denotes the number of downcrossings of A that occur during a cycle of
W. Substituting the distribution of D) from (2.6) in Cohen (1978) gives

Hy(M)

= vHy(A)’

for which the definition of H, appears in (A.1). The probability v will be calcu-
lated in (2.4) of Section 2.2.
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In the following three subsections, we will successively evaluate the stationary
distributions Fj, F» and F3 and the corresponding expected values E[C}], E[Cy)

2.1. Stationary distribution of X;

Let f; be the probability density function of the stationary distribution of X;
and let Dg;l) denote the number of downcrossings of z during a cycle of X;. From
the level-crossing arguments in Brill and Posner (1977) and in Cohen (1977), it
follows that

E[D{]
E[C1])”

f1 (.’II) = O<z <A

Observe that the process X; coincides with W until the point in the cycle at
which the process W either crosses over A or reaches 0, provided that both X,
and W start at the same level. Therefore, if we use Do)y, to denote the number
of downcrossings of z until the process W, starting at y, 0 < y < ), either crosses
over \ or reaches 0, then E[Dg(cl)] can be calculated in terms of the starting level
of the cycle Ci, as follows:

E[DY) = / E[Dorys] dG((y)) 0<z <A

Substituting the expression for E[Dqy,y,] from (A.2), Bae et al. (2002) obtained

H,(x) (H;(a:) N H,’,()\)
vG(A) \Hp(z) Hp(A)

E[DY] = ) 0<z <A

Conditioned on the starting level of the cycle C1, the expected value of E[C)]
can be expressed as follows:

A
E[C)] = /0 ElCi(v)] g((/\y))

where Cj(y) denotes the length of a cycle of X;, starting at level y. For an
ordinary M/G/1 workload process W, we define

TO)\;y = inf{t > OIW(t) ¢ (07 )\]a W(O) = y}

to represent the first exit time from (0, A\] when the process starts from W (0) = y.
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It follows from (A.2) that
A
E[TO/\;y] = / E[DO/\;yz]dx
A-y
(’\( y y) / H,(z)dz — Hy(z)dz, 0<y<),  (21)
p

which implies that

ElG] = VGI()\) ( Hy(A) - HI(A)/ Hy(z) dz)

because Ci(y) L4 Toxyy, Where 2 denotes the equality of distribution.
We can now express the stationary density fi(z) of the process X; as

Hp(M)Hp(z) — Hy(A)Hp(x)
A

HOWHN) -1 - B | Hy(w)dy

, O0<z <A,

fi(z) =

which agrees with the result of Bae et al. (2002).

2.2. Stationary distribution of Xa

We will use Y3 to denote a starting level above A in a cycle of the process Xs.
Using the Markov property of X;, Bae et al. (2002) obtained the distribution
function Q2(y) of Y2 in the form

A
1-G(y) +/0 Py — A, 2)dG(z)
H{(N)/vH,(X) ’

QZ(y):l“ y>)‘7

where
P(w, z) = Pr{W(Tp»;.) > A + w}
A—z
= c(w)Hy (A — 2) — p/ Jo(A =z —wdH,(u), w>0, 0<z<A\
00—
where c(w) = p(H * Ju)(A)/Hp(A), Juw(z) = Ge(z + w) — Ge(w) and Ge(z) =
(1/m) f; (1 — G(u))du, the equilibrium distribution function of G. We note that

the starting levels of each cycle in the process X are independent and have the
same distribution as the random variable Y5.
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Conditioning on the starting level, we now have

B = /A " ECy(w))dQ:(y), (2.2)

where Ca(y) denotes the length of a cycle of X2 when the starting level is y > .
For 0 < z < y, let T,y be the time that an ordinary M/G/1 workload process W
takes to reach a level r, starting from vy, and let V' be a generic random variable
denoting the interval between successive times at which the system is monitored.
Because of the memoryless property of the exponential random variable, Cs(y)
can now be described as follows:

D 1'% if V< T)‘.
C = Y
2(v) { Tyy +Cy if V> Ty,

where Cj denotes the length of the period Cy(y) that remains after the process
X downcrosses the level \. We note that C} is independent of the starting level y
because X has already downcrossed . Again invoking the memoryless property
of the exponential random variable V', we can express the expected value of Cs(y)
in the following terms:

E[Ca(y)] = Emin(V,Ty,y)] + E[C3 | V > Ty |Pr{V > Th,}
1 - 1
-1 +T-29 (BlCH - 7). (2.3
£ §
where the second equality follows from the facts that E[min(V,T),)] = {1 -
T(y — X\ €)}/€ and Pr{V > Ty, } = T(y — )\, €), in which T(y, &) = E[e~¢Tow] is
the Laplace-Stieltjes transform of Tp,y, and is derived in (A.4).
Let Y be a random variable which represents the sum of A and the amount
by which the level exceeds A when the process W, having started at A, crosses
over A without returning to 0. Then the distribution function of Y is

Pr{Y <y} = Pr{W(Tox») < y[W(Toxa) > A}
P(y—\A)

=1 =pon

y> A

Note that P(0,A) =1 —1/Hpy(A).
The Markov property of the process X also allows us to observe that

D .
Cs = Toxx + 1w (Toa)>A) (mln(V, Tyy) + l{TA;y<V}Cé> :
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We can determine the expected value of C} from this equation by substituting
E[Toxy] = fo »(z)dz/H,(A) from (2.1), and it then follows that

/ Hy(z)dz — <

B 1,0 (1+ [T - Af)d Py - AA))

Referring back to (2.2) and (2.3), we are now at last able to formulate the expec-
tation

A
.maﬂ=a—w{£1Lme+%,

where v is the probability that the process X3 exists in the cycle of X, which is
given by

[ T- 26
70 (14 [ Tu- 2840 -210)

y=1- (2.4)

To apply the level-crossing arguments, we now need to know the expected
number of downcrossings of x for the process X, during its cycle, denoted by
E [Da(cz)]. Conditioning on the starting level y, we now have

E[D®] = A E(DD1dQx (), (2.5)

where D?(,_?,;) is the number of downcrossings of z that occur in the process X,
during a cycle starting at y > A. If Dy.(t) is the number of times that an
ordinary M/G/1 workload process W downcrosses z during an interval of length
t, and D)y, is the number of downcrossings of x that occur before W hits A,
having started at y > A, then

(2) D { Dyw(V) if V S TA?y’ (2.6)

Dy Drge +D? it V>Ty,
and

D/(\?c) Doxpnz + D¢ )l{W(To,\ A)>A}- (2.7)
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We also observe that
E[D/\;yz] = E[Dk;ywl{V>TA;y}] + E[D/\;yz]-{VSTA;y}]
= E[Dayalivst, )] + EDyz(V)lv<r, )]
+ E[Dxw,_s+xa|Pr{V < Thy}, (2.8)
where
W, =WWV)|W(0) =y, V< Toy

represents the workload of W after the exponential time V has elapsed, given
that W starts at y and does not reach zero before the exponential time. From
Lee and Kim (2007), Wy has the Laplace-Stieltjes transform

fo(€)e" — 6= — T, (£)(60(¢) - 6))

E[e—GWy] — £ ( _ . 6>
00(£)(€ — w(9))(1 - T(¢)) -

where
o(8) = 6 —v +vG(0). (2.9)

Here G(0) = J;° e7%"dG(z) is the Laplace-Stieltjes transform of G and 6o () is
the solution to the equation

o) = €. (2.10)
Taking the expectations in (2.6) and using the relation (2.8), we have
E[DR] = E[Dxya] — (1~ T(y = X ) EDxw,_as] + Ty — A, O EID).
And substituting the expectations of (2.7) into the above equation, we also have
[o9]
E[D2)] = ElDoxpe] ~ A (ElDxgel = (1= T(y = X €) EIDrw, 2]
+T(y - L, O BIDY) dy Py — A, ).
Solving for E [Dg\i)] gives
E[D{Y]

bl

L+ [T - AO4PE - AN

which finally allows us to evaluate (2.5).
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2.3. Stationary distribution of X3

Let Y3 be the starting level in a cycle of X3, where Y3 depends on the starting
level Ys in the preceding cycle C2 of the process Xy. We will write Y3(y) for the
starting level of X3 if the starting level of Cy is y. If X2(0) = y > A, it follows
that

p [ WV) if V<Ty
Y = Al
3(v) { Ya(\) if V> Ty

For the specific case of y = A, we have

D) Y3 ift W(Toan) =0,
Y5 = { 3(Y) if W(Toan) > A

Hence, the Laplace-Stieltjes transform of Y3(y) is given by
Ele~s()
= Ele™™ W1y e, 3 IW(0) = 4] + Pr{V > T),, } E[e"™ |V > Ty ]
= Ele™™M[W(0) = y] — Pr{V > T, }Ele ™ MW (0) =4,V > Ty
+Pr{V > Ty, } E[e 2]
= Ele™®™"\W(0) = y] - T(y — M, OE[ " V|W(0) = A
+T(y — X, €)E[e™N] 4> A, (2.11)

in which the last equality follows from the memoryless property of the exponential
random variables. Using the results of Boxma et al. (2001) we find that for y > 0,

—60(€)
$(6,y) = Bl | W(0) = 4] = Z—fW) (eﬁoy B ‘eeo(JT)ZI) , 020,

where ¢(8) and 6(¢) were defined in (2.9) and (2.10) respectively. Therefore
E[e=%%3(®)] can be rewritten as

Ele™™W] = 4(8,y) - T(y = X, 96, ) + T(y - A, &) BN (212)
Using a similar method, we can also calculate £ [6“91/3(’\)] as follows:

Ele®™M] = Pr{W(Torn) = 0}E[e™"3|W (Tor) = 0]
+Pr{W (Tor,) > AL E[e™ 0| W (Toan) > A
1

. 6—0Y3 _
- mwPe (1

1 —0Y3
) P o) >
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1 vt [ o v -
= Hp(/\)E[e OY] _ /)‘ Ele 0Y- (’y)lxz(o) — y]dyP(y “ AN
1 _ovs co N
- H,,(A)E[e ™ - /A {¢(0,y)—T(y—A,§)¢(9,A)

+T(y - A, g)E[e—"Ye»(*)]} dyP(y — X, \).

Solving the above equation yields

1 —ovay [T s ~
E[e—ayg(x)]:Hp(A)E[e ] A [¢(0,y) T(y )\)1/1(0,)\)] dyP(y ,\,)\).

1+ A Ty — A €)dyPly — A, N)

Thus, conditioning on the initial level X5(0) = y, and substituting the above
formula into (2.12), we finally obtain

E[e™]
B /:o Ele™"*W]dQ;(y)

= ( [ w0.9a0:0) - 1= )0 [¢<a, N+ [ wonare- A A)]) ,

from which we can determine the expected value of Y3 and the distribution func-
tion Q3(y) of Y3.

Notice that if we change the scale of time by making 1/M the unit of time,
then the arrival rate of the process X3 during the period Cs becomes v/M, the
service speed becomes 1, and the traffic intensity p' = vm/M. Since p/ < 1,
the well-known fact in Wolff (1989, p. 393) about the expected busy period of
M/G/1 queues with exceptional first service yields

1 By _ E[vy)

E[C‘q’]:Ml—p”M—p’

in which the time scale is restored by multiplying by 1/M.

Let Dy.,, denote the number of downcrossings of z that occur before the
workload process W’ with a traffic intensity of p’, reaches 0, given that the
workload starts at y and Dg) is the number of downcrossings of z that occur
during the cycle of process X3. Conditioning on the starting level y, we have

ElDY) = | " BID),,.1dQs()
= Hy(x)
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for 0 < x < X and for £ > X we have
T o0
E(D®) = A E[D},,.1d@s(y) + / E[D},,.1dQs()
T

~ [ @) - By - ) d0s) + [ Hy(@)dQat)
= Hp/(x) — leQ3(£I:).

Let f3(z) be the probability density function of the stationary distribution of the
process X3. Deploying the level-crossing arguments again, we can obtain

E[DY)]

f3(z):m, 0<z<oo.

REMARK 2.1. We will now check our result for the special case of £ = oo,
which was treated in Bae et al. (2002). It follows from (2.11) that

Jim Ele ()] = Jlim ¥(6,)

= e—Oy’
because
i %006 _ . v —vG(Bo(§)) +§
t¢—oo € §—o0 ¢
=1.

Since v — 1 we can deduce that
E[e™®3) = E[e™),

when £ = oo, which means that there is no period of process X, in this case.
Hence we can conclude that the stationary distributions are the same as those in
Bae et al. (2002) when £ = co.

APPENDIX : THE WORKLOAD PROCESS OF THE M/G/1 QUEUE

It is well-known in Cohen (1982, p. 255) that, under the assumption that
p = vm < 1, an ordinary M/G/1 workload process W = {W(¢),t > 0} has a
unique stationary distribution V given by

V(z) = (1 - p)Hp(z)
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with -
Hy(z) =) p"Ge"(x), (A1)
n=0
where G}" is the n-fold recursive Stieltjes convolution of G, with the Heaviside
function G20.
Let us define Dyy,y; as the number of downcrossings of level z that occur

before the process W, having started from y, crosses over X or reaches 0. Bae et
al. (2002) showed that

Hy(z)Hp(A - y)
H,(A)

Hy(x)Hpy(A —y) B
H,(X)

if O<z<y<),

E[DO)\;ym] = (A2)

Hyz—-y) if O<y<z<A

If we let Do,y = limy_, Doxiye, then it expresses the number of downcrossings
of z that occur before the process W, having started from y, returns to 0. Since
limg oo Hy(x) = 1/(1 — p), from the monotone convergence theorem it follows
that

E[DO;yz] = /\li_)IEOE[DOA;yZ]

_} Hp(x) if O0<z<uy,
| Hy(z)—Hy(z—y) if 0<y<az,

which coincides with the result in Bae et al. (2002).

Now we need the distribution of Tp,y, which is the time for the process W to
reach 0 when it starts from y. From the Markovian property of W, we can see
that

y if N(y)=0,
D N(y)
To.y 2 A3
WY g+ Y B if N =1, (A-3)
=1

where N(y) is the number of customers who arrive during the time y, which
is the Poisson random variable with parameter vy, and where B; denotes the
busy period of the M/G/1 queue. It is well known (Wolff, 1989, p. 390) that
the Laplace-Stieltjes transform of B;j, denoted by B (9), is the solution to the
following equation:

B(6) = G(6 +v — vB(6)).
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Using Wald’s equation (Ross, 1996, p. 105), it follows from (A.3) that the
Laplace-Stieltjes transform of Tp,, is given by

Toy(0) = exp {-(0 tv— Vé(o))y} (cf. Wolff, 1989). (A4)
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