ASYMPTOTIC OPTION PRICING UNDER A PURE JUMP PROCESS

  • 발행 : 2007.06.30

초록

This paper studies the problem of option pricing in an incomplete market. The market incompleteness comes from the discontinuity of the underlying asset price process which is, in particular, assumed to be a compound Poisson process. To find a reasonable price for a European contingent claim, we first find the unique minimal martingale measure and get a price by taking an expectation of the payoff under this measure. To get a closed-form price, we use an asymptotic expansion. In case where the minimal martingale measure is a signed measure, we use a sequence of martingale measures (probability measures) that converges to the equivalent martingale measure in the limit to compute the price. Again, we get a closed form of asymptotic option price. It is the Black-Scholes price and a correction term, when the distribution of the return process has nonzero skewness up to the first order.

키워드

참고문헌

  1. ANDERSEN, P. K., BORGAN, 0., GILL, R. D. AND KEIDING, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York
  2. CARR, P., GEMAN, H., MADAN, D. B. AND YOR, M. (2002). 'The fine structure of asset returns: an empirical investigation', Journal of Business, 75, 305-332 https://doi.org/10.1086/338705
  3. CHAN, T. (1999). 'Pricing contingent claims on stocks driven by Levy processes', The Annals of Applied Probability, 9, 504-528 https://doi.org/10.1214/aoap/1029962753
  4. Cox, J. C., Ross, S. A. AND RUBINSTEIN, M. (1979). 'Option pricing: a simplified approach', Journal of Financial Economics, 7, 229-263 https://doi.org/10.1016/0304-405X(79)90015-1
  5. DELBAEN, F. AND SCHACHERMAYER, W. (1996). 'The variance-optimal martingale measure for continuous processes', Bernoulli, 2, 81-105 https://doi.org/10.2307/3318570
  6. EBERLEIN, E. AND JACOD, J. (1997). 'On the range of options prices', Finance and Stochastics, 1, 131-140 https://doi.org/10.1007/s007800050019
  7. EBERLEIN, E. AND KELLER, U. (1995). 'Hyperbolic distributions in finance', Bernoulli, 1, 281-299 https://doi.org/10.2307/3318481
  8. EL KAROUI, N. AND QUENEZ, M.-C. (1995). 'Dynamic programming and pricing of contingent claims in an incomplete market', SIAM Journal on Control and Optimization, 33, 29-66 https://doi.org/10.1137/S0363012992232579
  9. ELLIOTT, R. J. AND MADAN, D. B. (1998). 'A discrete time equivalent martingale measure' , Mathematical Finance, 8, 127-152 https://doi.org/10.1111/1467-9965.00048
  10. FOLLMER, H. AND SCHWEIZER, M. (1991). 'Hedging of contingent claims under incomplete information', In Applied Stochastic Analysis (Davis, M. H. A., Elliott, R. J., eds.), 389-414, Gordon and Breach, New York
  11. FREY, R. (2000). 'Risk minimization with incomplete information in a model for highfrequency data', Mathematical Finance, 10, 215-225 https://doi.org/10.1111/1467-9965.00090
  12. FRITTELLI, M. (2000). 'Introduction to a theory of value coherent with the no-arbitrage principle', Finance and Stochastics, 4, 275-297 https://doi.org/10.1007/s007800050074
  13. HUBALEK, F. AND SCHACHERMAYER, W. (1998). 'When does convergence of asset price processes imply convergence of option prices?', Mathematical Finance, 8, 385-403 https://doi.org/10.1111/1467-9965.00060
  14. JACOD, J. AND SHIRYAEV, A. N. (1987). Limit Theorems for Stochastics Processes, SpringerVerlag, Berlin
  15. KIRCH, M. AND RUNGGALDIER, W. J. (2004). 'Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities', SIAM Journal on Control and Optimization, 43, 1174-1195 https://doi.org/10.1137/S0363012903423168
  16. LEE, K. (2002). Hedging of Options when the Price Process has Jumps whose Arrival Rate Depends on the Price History, Ph.D Thesis, Purdue University, West Lafayette
  17. MADAN, D. B. AND SENETA, E. (1990). 'The variance Gamma (vg) model for share market returns', Journal of Business, 63, 511-524 https://doi.org/10.1086/296519
  18. PRIGENT, J.-L. (2003). Weak Convergence of Financial Markets, Springer-Verlag, Berlin
  19. RACHEV, S. T. AND RUSCHENDORF, L. (1994). 'Models for option prices', Theory of Probability and its Applications, 39, 120-152 https://doi.org/10.1137/1139005
  20. ROUGE, R. AND EL KAROUI, N. (2000). 'Pricing via utility maximization and entropy', Mathematical Finance, 10, 259-276 https://doi.org/10.1111/1467-9965.00093
  21. SONG, S. AND MYKLAND, P. A. (2006). 'An asymptotic decomposition of hedging errors', Journal of the Korean Statistical Society, 35, 115-142