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NETWORK DESIGN AND PREPROCESSING FOR
MULTI-SCALE SPHERICAL BASIS FUNCTION
REPRESENTATIONT

HeEe-SEOK On! AND DoNGHOH Kim?

ABSTRACT

Given scattered surface air temperatures observed by a network of weather
stations, it is an important problem to estimate the entire temperature field
for every location on the globe. Recently, a multi-scale spherical basis func-
tion (SBF) representation was proposed by Li (1999) for representing scat-
tered data on the sphere. However, for a successful application of Li (1999)’s
method, some practical issues such as network design, bandwidth selection
of SBFs and initial coefficients are to be resolved. This paper proposes au-
tomatic procedures to design network and to select bandwidths. This paper
also considers a preprocessing problem to obtain a stable initial coefficients
from scattered data. Experiments with real temperature data demonstrate
the promising empirical properties of the proposed approaches.
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1. INTRODUCTION

Suppose that we have, as shown in Figure 1.1, scattered surface air tempera-
tures observed by a network of weather stations x; satisfying

yi=f(@i)+e, i=12,...,n,
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FIGURE 1.1 Average winter temperatures observed at 913 weather stations during year 1970-
1971.

where ¢; denotes the measurement errors. We want to estimate the temperature
field f(z) for every location x on the globe. Figure 1.1 shows the average winter
temperatures during year 1970-1971. The original large data set was organized
by Jones et al. (1991). A subset of the data set was used by Luo and Wahba
(1998), Li (1999) and Oh and Li (2004) for their analysis.

Being capturing global waves without good localization properties, spherical
harmonics are not very efficient in representing such data as shown in Figure 1.1
that have inherent multi-scale characteristics (for example, global patterns of
northern hemisphere winter coupled with local anomalies of different sizes in
areas such as the Andes, Central Siberia, and Central Canadian Shield). The
spherical smoothing spline method tends to produce uniformly smooth results,
even though the data have intrinsic multi-scale structure (Oh and Li, 2004).
Wavelets with localization properties are particularly effective in representing
multi-scale phenomena that comprise activities of different scales at different
locations. Moreover, their orthogonality gives rise to multi-scale decompositions
that make wavelets a powerful tool for extracting the field’s activities at different
scales or detecting regional anomalies from global trends.

Several procedures have been proposed for constructing spherical wavelets
(SWs). Narcowich and Ward (1996) proposed a construction method of SWs
for scattered data on the unit sphere. SWs of Narcowich and Ward (1996) are
constructed as the basis functions of the orthogonal complements subspaces pro-
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duced by projecting the linear combinations of localized spherical basis functions
(SBF's) onto smaller subspaces obtained by successively removing subsets of the
SBFs. Since SWs and SW representations of Narcowich and Ward (1996) are
designed for scattered data, their method can be easily applied to represent me-
teorological data which is collected over the surface of the earth via satellites
or ground stations with the advantages of spherical wavelets. However, their
spherical wavelets always have the same spatial scale that only depends on the
pre-determined bandwidth parameter regardless of the resolution level or the
distribution of the station. In climate study, it is important to detect local ac-
tivities from global trends. To achieve this, we need a multi-scale analysis that
can extract local patterns of different sizes of anomalies. The SW representation
suggested by Narcowich and Ward (1996) may not be effective for this purpose
because it relies on spherical wavelets that have a constant size of bandwidth. To
solve the above problem, Li (1999) introduced multi-scale SBF representation in
which SBFs of different sizes of bandwidths are employed.

In this paper, we focus on some practical issues for implementation of SW
methods: (1) a choice of network design and bandwidth of SBFs, and (2) prepro-
cessing of multi-scale analysis. Since appropriately designed network and properly
selected bandwidths ensure stable multi-scale SBF representation and meaningful
multi-scale interpretation, these are important for successful applications of SW
methods. We propose fast automatic procedures for selecting network design and
bandwidths of SBFs without considering physical and geographical constraints,
which is desirable in applications such as data compression and objective analysis
with a large data.

In addition, as pointed out by Oh and Li (2004), for the scattered data, a
multi-scale analysis based on the discrete samples of the underline function is in-
appropriate, because it produces severely biased representations of the function.
We consider a preprocessing to obtain the initial coefficients from the scattered
spherical data for appropriate multi-resolution analysis.

The rest of the paper is organized as follows. In Section 2, we first review
the SBF representation of Narcowich and Ward (1996) and the multi-scale SBF
representation of Li (1999). Section 3 presents automatic selection methods of
network design and bandwidths of SBFs. In Section 4, a preprocessing of multi-
scale analysis is discussed. In Section 5, we apply the proposed methods to a real
temperature data. Lastly, we present the conclusion in Section 6.
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2. MULTI-SCALE SPHERICAL BASIS FUNCTION REPRESENTATION

In this section, we review the SBF representation proposed by Narcowich and
Ward (1996) and Li (1999) for our application.

2.1. Spherical basis function representation

Narcowich and Ward (1996) proposed spherical wavelets for scattered data on
the sphere from spherical basis functions (SBFs), ¢(z, z;) = ¢(z - x;), where z - z;
is the cosine of the angle between x and ;. They suggested a SBF representation
of a field f(z) in the form of

f@) =) Big(z - ).
3=1

For a valid SBF, the matrix ® := [¢(n;, n;)]}};_; is to be positive matrix. This
property can be preserved by the SBFs if in the Legendre series ¢(z) = Y ;2 g1 X
Py(z), the coefficients g; are positive. Here P;(x) denotes the Legendre polynomial
of degree [ satisfying f_ll P%(z)dz = 1. A simple and useful example of SBF is
the generating function of Legendre polynomials

RS el N -
¢($’77) T (1 _ an + 7’]2)3/2 - ;(2l + 1)77[Pl(93),

where 1 € (0,1) is a bandwidth parameter. We call this function the Poisson ker-
nel. Figure 2.1 shows the normalized Poisson kernel ¢(cosd;7) := {(1—n)2/(1+
1) }é(cos ¥;m) as a function of the angle variable 9 which satisfies ¢(cos(0);7) = 1.
As can be seen, the Poisson kernel has a peak at angle 0 (i.e. z = z') and de-
creases monotonically as the angle deviates from 0 to x. Therefore, one can
regard 7 as a spatial bandwidth parameter of the Poisson SBF representation:
small bandwidth when 7 is large and large bandwidth when 7 is small. Therefore,
a spatially localized representation can be achieved by setting 7 near unity.

To construct spherical wavelets, Narcowich and Ward (1996) considered the
characterization of the loss in a SBF representation as stations are removed pro-
gressively from the original network in the representation. An interesting question
is how to describe the loss in the SBF representation when some stations are re-
moved. It is this answer that defines spherical wavelets and results in a spherical
wavelet representation.

Let N1 := {z;}}; be the original network of stations, and N2 := {z;}]2,,
(m < n) be a smaller network obtained by deleting the last n — m stations from
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FIGURE 2.1 Plot of normalized Poisson kernel ¢(cosd;n).

Ni. Given the observation from f(zx), let
A@) =) Brid(z - z:) = B] b1 () (2.1)
i=1

be an SBF representation of f(z). If the (1 ; vary, the equation (2.1) generates
a collection of SBFs, V; := span{¢(z - ;) : ; € N1}. The SBF representation
using the smaller network N5 is

fale) == Boid( - i) = B] ().
=1

Since fi(z) is known throughout the sphere, one can choose fa(z) to best ap-
proximate fi(x) in terms of least squares, that is, by choosing B ; such that

axgmin | 1(0) ~ 3 00z - ) d(e), (2.2
2,i i=1

where the integral is over the entire sphere 2. This criterion leads to

ﬁ2 = VeC{ﬂZ,i};ll = A2_1b2,
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where the matrices Ay and by are given by

= [(¢(-2:), (-2j))]ij=1 and by = vec{(fi(-), p(-:)) }il1- (2.3)

The inner product in (2.3) is defined (A(:) = [ A(-z)B(z-)d(z) for any
square integrable spherical functions A and B. Wlth B2 given by (2.2), the
resulting field fa(z) is the projection of f1(z) on the space Vy := span{¢(z - z;) :
z; € No}. If the difference (or residual) field is denoted by

ri(z) = fi(z) — fo(=),

and the collection of ri(x) is denoted by Wi, then we have V; = Vo @ W;. The
space W represents the new information in V) that is not contained in the smaller
space V,. Any field fi(x) € V) can be decomposed as

fi(z) = fo(z) + r1(2), (2.4)

where fa(z) € Vs and r1(z) € Wy. Narcowich and Ward (1996) regarded (2.4) as
a “multi-resolution” analysis of fi(z), since fi(x) stems from a larger (possibly
denser) network and thus has a higher spatial resolution than fy(z). Based on
this interpretation, the field 71 (z) may be regarded as the lost high resolution
detail when representing fi(x) by fa(x).

Since the decomposition is based on the nested networks of stations, it is more
meaningful to interpret 71 (z) as local activities of fi(x) near the deleted stations
that cannot be accounted for by the activities of fa(x). From this interpretation,
r1(z) can be considered as a local component and fa(z) as a global component
of the field f;(z). With the nested property of spaces, V1 D Vo2 D --- DV and
Vi=Vi1®W, (l=1,...,L—1), the decomposition of (2.4) is generalized by

filz) = filz) + -1 (z) + - +ri{z), (=2,...,L).

2.2. Multi-scale spherical basis function representation

To overcome the single scale problem, Li (1999) proposed to employ a set
of SBF's with different bandwidths that are adapted to the stations. To explain
more precisely, let us define a nested sequence of networks N7 D ANp D --- D N,
where M, :={z;:i=1,...,m}forl=1,...,Landnpy;1:=0<n; < - <nz <
ny := n. For a given field f(x), a multi-scale SBF representation is expressed as

L

f(x):Z Z Bridi(z - ;). (2.5)

=1 t=n;41+1
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All stations in the l-th subnetwork M; = {z; : i = my41 + 1,...,m} employ
the same SBF ¢;(x), but different SBFs with different scales (bandwidths) are
assigned to the L subnetworks. In this representation, a larger bandwidth is
allowed for sparsely located stations and a smaller bandwidth for densely lo-
cated stations. Furthermore, the nested networks N; can be arranged so that the
sparseness of stations in A increases with the increase of I. One can choose the
multi-scale SBFs so that the bandwidth of ¢;(z) increases with the sparseness of
N, and thus the variable ! can be truly regarded as a scale parameter.

To apply the multi-scale SBF representation in (2.5), the appropriate ¢;(z)
and N; should be chosen in advance. Suppose that we choose ¢;(x) and Nj.
The decomposition step of the multi-scale SBF representation works in the same
way as the single-scale SBF representation. As before, any field fi(x) € V; can be
decomposed as (2.4) with fi1(z) € Vi1 and ri(z) € W, where V; := span{¢ (z-
:v') = Ml:;l/ =1,...,L}. However, the fundamental difference between the
two decompositions is in the structure of the space V. In the decomposition using
the multi-scale SBF's, the space V) is composed of multi-scale SBF's ¢, (a:m') with
scale I' greater than or equal to I. Since [ can be considered as scale parameter
for SBFs ¢;(z) and networks A, the space V; can be interpreted as having a
smaller scale (i.e. a higher spatial resolution) than the space V,41. The space W),
contains a higher resolution detail of V; that cannot be explained by V.

3. NETWORK DESIGN AND BANDWIDTH SELECTION

As mentioned early, a judiciously designed network N7, is required for a stable
multi-scale SBF representation of (2.5). To obtain AN we can start with a few
sparsely located stations over the area and gradually increase the density by
adding more stations so that we can obtain N; = Nj;; U M, sequentially for
I=L-1,...,1. Thisis a bottom-up design approach. In this section, we suggest
some schemes to choose the nested networks N; systematically for performing the
bottom-up design approach. Our network design depends only on the location of
data and the type of grid which is predetermined without considering geophysical
information. Therefore, this approach is fast and efficient so that it will be
desirable to work with a large data set.

3.1. Type of grid

Before explaining the steps of network design, we propose two grid types,
and introduce Goéttelmann’s grid by Goéttelmann (1996). Each grid type has a
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regular and a reduced grid, respectively. The reduced grid is designed to over-
come the regular grid problem of a strong concentration of points near the poles.
But since the network is selected by the relation of data-observing sites and a
grid type, as will be mentioned later, we can not assure that the reduced grid
produces networks that can better represent spherical fields. Let us define [0, 2]
as the range of longitude and [0, 7] as the range of latitude to obtain grid points.
Then, by simple transformation, all grid points can be located on [—180°, 180°]
as longitude and [—90°,90°] as latitude.

' 8.1.1. Rectangular regular grid. We define the index set, for [ € N,
Kl :={(i,k): k=0,1,...,24i=0,1,...,2'}. (3.1)
The regular grid by the index set in (3.1) is defined
T = (651, 0r0); (5, %) € K[},

where grid points of longitude, ¢;; = ir/2!~1 and grid points of latitude, Ory =
km/2. In case of | = 1, the grid 77" is

T = {(0,0), (0,3), (0,m), (m,0), (m, 3), (x, ), (2m,0), (2m, 3), (2m,m)}.

3.1.2. Rectangular reduced grid. Define the index set K lh ”

h ! 2 — 27k h
K" = {(i,k) : k=0,1,...,2 ;¢=0,1,...,T+1} C Kp',
2 k,l
where the control parameter r,’c‘,l is given as
0, <Ok <3,
N round{! — log,(7k)}, 0<bky <3,
., =
ol round{l — logy(n(2! — k))}, 3T <O, <,
-1, Or; =0,m.

Here round{z} denotes the closest integer to . The reduced grid is given by
T = {41, 060); (6, K) € KT} C TP,

 where ¢;; = i2r”:’l7r/ 2!-1 are the grid points of longitude and Ok, = km/ 2! denote
the grid points of latitude.
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3.1.3. Modified Géttelmann’s regular grid. For [ € N, we define the index set
K :={(@,k):k=0,1,...,25i=0,1,...,2F}, (3.2)

where [ is the index of level, ¢ is the index of grid point of longitude and k denotes
the index of grid point of latitude. The regular grid induced by the index set in
(3.2) is defined

77 = {(¢iy, Oky); (3, k) € KT},
where grid points of longitude, ¢;; = in/ 2! and grid points of latitude, Oky =

S

km/2!. Obviously, the sequence {7;°};en of grids is hierarchical: 7° C 7, %1 for all
[ € N. For the simplest example, let [ =1, the grid 7;° is

T = {(¢i1,0k1); (4,k) € K7},

where ¢;1 are 0,7/2,7,37/2,2n and 01 are 0,7/2,7 and K§ = {(¢,k) : ¢ =
0,1,2,3,4; k = 0,1,2}.

8.1.4. Modified Gottelmann’s reduced grid. The index set K;”" for reduced grid
is defined as

2l+1 _ 27"2’1
Ll A Vel 3

OTk,1

K ={(i,k): k=0,1,...,24i=0,1,...,

where the control parameter for dropping grid points according to latitude level,
T, is defined to be

0, 2 <Oy <3,

|l — logy(mk) |, 0 < Oky <7,
Tkl = -

[l —logy(m(2" — k)], 3F <Oy <,

l—l, Gk,,:O,w.

Here |z]| denotes the largest integer less than or equals to z. The reduced
grid is given by
T o= {(¢ig, Ok0); (4, k) € K"} C T,

where grid points of longitude, ¢;; = i2rz:l7r/ 2! and grid points of latitude, Or =
km/2L.

3.1.5. Géttelmann’s regular grid. Define the index set K lG

KF ={(4,k) : k=0,1,...,2%i=0,1,..., 22}
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By setting grid points of longitude and grid points of latitude

T

. T
¢1:’l = lﬁ and ek’[ = kﬁ,

we obtain the grid 7,% := {(#;1,0k,); (5,k) € KIG} The grid ’];G is the same as
S
41

3.1.6. Gottelmann’s reduced grid. Let grid points of longitude, ¢;; = i2r’(=;,l1r/ 2+l
and grid points of latitude, 0; = kmr/ 2+1 The control parameter, r,?)l is defined
to be

0, 2 <O <3,
G - |1+ 1 —logy(nk)], 0<6 <7,
U L - logy(r(@H — k), <<,
11, Ory =0, 7.

Then, the reduced grid is given by

G 2l+2_2"‘gl
K" = {(,k): k=0,1,...,2"%i=0,1,...,~———F— + 1} C KF.

Ak,
O = {($ig,011); (5,k) € KO} € TC.

The grid ’];G’r is similar to the grid ’];i’l" But the grid points near the two poles
are different from 7;77.

Figure 3.1 illustrates the grid points obtained from the above three grid types.

3.2. Network design

Here we propose a fast method for network design by bottom-up design ap-
proach. Our network is designed systematically based on the location of data and
the type of grid. As the resulting network generated by the proposed method, we
expect that in each level (resolution) AV; and M;, stations are distributed over the
sphere as uniformly as possible, and stations between two levels are not too close
so that we can apply SBFs with different bandwidths to these stations. Here are
the steps of proposed network design.

1. Obtain the center points ¢; of each grid box from the grid 77 which has the
smallest number of grid points. Form a territory (circle) D; around a given
center point. Thus the number of territories should be equal to the number
of center points. Then compute the geodesic distance from locations of data
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FIGURE 3.1 (a) Regular grid points of rectangular grid type for | = 3; (b) Reduced grid points
of rectangular grid type for | = 3; (¢) Regular grid points of modified Géttelmann’s grid type for
I = 3; (d) Reduced grid points of modified Géttelmann’s grid type for | = 3; (e) Regular grid
points of Géttelmann’s grid type for | = 2; and (f) Reduced grid points of Gottelmann’s grid type
forl=2.

d; € D; within a territory to the center point of the territory, {arccos(c;-d;)}
and find the location of data which has the minimum distance to the center
point. A network with sparsely located stations, N, is made up from these
locations.

2. From the next grid 72, compute the center point c; of each grid box. As
with step 1, draw a territory (circle) D; around a given center point and
find the closest station to the center point within its territory, D;, for all
t. With the selected stations, build the set, say M7} _;. Then compare
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FIGURE 3.2 Nested network with 6 levels for 913 stations to observe the surface air temperatures
of year 1970-1971.

these stations with stations in Ap. That is, compute the geodesic distance
from the stations in Mj _; to the stations in N If some distance between
two locations is closer than a criterion, the location is deleted from Mi_,.
After the comparison procedure, the network Mjy_; is formed. Note that

Ni_1=N,uUM_;.

3. Repeat step 2 for remaining data and grid points from 7; for [ = 3,4, ...
until the longitude of grid box from 7; becomes 5 degrees. Finally, N1 =
N UMp_1U---UMj is obtained.

For performing the above steps, it is necessary to consider the territory and
deletion criterion for each step. The radius of territory should not be too large
to reduce the possibilities which select stations located far from the center point
of each grid box. Note that when there are no stations in a grid box, and the
radius of territory is too large, a station in another grid box can be selected as
closest stations to the center point of a grid box.

Figure 3.2 shows a nested network with 6 levels for 913 stations which recorded
the surface air temperatures of year 1970-1971. The modified Gottelmann’s reg-
ular grid is used for this network design.

3.83. The selection of bandwidth

We now consider bandwidths of SBFs to be employed for each network N,
Mp_y,...,M;i. In view of SBF ¢;(x), for sparsely located stations, we assign
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SBFs with larger bandwidths to cover such area. As the density of stations
increases, the bandwidth is decreased in order to represent local area activities
of the field efficiently.

First of all, let us look at the scale parameter of 1-d wavelets defined on a real
line in order to preview the bandwidth of spherical wavelets and to understand the
procedure of the choice of bandwidths to be explained later. From the definition
of 1-d wavelets

t— 2k
27

Yik(t) = 27912y, ( > , wWhere 1/ is mother wavelet,
we know that the scale parameter j is decided systematically. That is, as the
scale parameter j increases 1 unit every time, the length of support of the wavelet
increases twice as much as before. Thus there is a relationship between the scale
parameter and the length of the wavelet.

Similarly, we suggest that the bandwidths 7; of SBFs be chosen such that

nLv—l:e_pl’ 1:172a"'7L_1a (33)

where p; = p*/2'. The p* can be obtained by p* = —lognyz, where 7y is the
bandwidth of the coarsest network level L. As mentioned before, the networks
are related to a grid. As the level [ decreases, a grid box related to the level
decreases one fourth in size (both intervals of latitude and longitude decrease
by a half). Thus, the area covered by a SBF decreases as the level ! decreases.
That is the reason we use the bandwidths 7, produced by (3.3). Hence, if the
bandwidth 7y, of the sparsest level L is decided, all bandwidths can be obtained
systematically.

Now let us discuss how we can get the bandwidth n;. From simple geometry,
the surface area covered by surface mass distribution with variance ¢ over unit
sphere  is 2m(1 ~ /1 — ¢2). Since the variance of SBF or spherical wavelet from
Poisson kernel is 02 = ((1 — 72)/(1 + 1?))?, the surface area covered by SBFs is
2m(1 — /1= ((1 = 72)/(1 + n?))?). Note that as the bandwidth of SBF is close
to 0, the surface area covered becomes 27, Since the total surface area of the
unit sphere is 47, in this case, we need two stations to cover the whole sphere

2. In another extreme case, as the 7 goes to 1, the surface area covered is close
to 0. To cover the whole sphere 2, we need infinitely many stations. Under the
assumption that the stations are distributed equally over the sphere, it can be
easily known how many stations are needed in order to cover the whole sphere
with fixed 1 and how large the bandwidth of SBF is needed to cover the whole
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sphere when the number of stations are fixed from the following

2 1_ (7
# of stations = n = and n= \/: - )
1-n2\ 2 14+a,

1-y/1- (%)

where a, = /1 — (1 — 2/n). Stations in the sparsest network N, based on any
grid scheme are almost distributed equally. Thus, from the above equations, we
can decide the bandwidth ny. For example, we decide SBFs with 6 different
bandwidths to be employed at networks with six levels in Figure 3.2. The result
is that n; = 0.97 for M, n2 = 0.95 for My, 3 = 0.90 for M3, n4 = 0.81 for My,
15 = 0.67 for M5 and ng = 0.45 for N.

4. PREPROCESSING OF MULTI-SCALE SBF REPRESENTATION

For a given climate field f(z), we have proposed a multi-scale SBF represen-
tation of the form

)= Y Buidp(z-z:) =P (2), (4.1)

' eI

where 7; := {(I',4):!' = 1,...,L;i= Ny, 1+1,...,Ny}. The coefficients B can
be obtained in many ways. The simplest example is observations . Once the
fi1(x) is obtained, all global fields fj(z) for [ = 2,..., L and detail fields r;(z) for
1 =1,2,...,L — 1 are decided by the multi-resolution analysis. Thus, whether
the fi(z) has a good performance is very important for a good representation
of a climate field. To that end, we consider two approaches, interpolation and
approximation method.

We first discuss interpolation methods for obtaining coefficients 3;. In (4.1),
since the interpolation matrix ®1 = [¢y (x; - z;)]i; for I = 1,..., L is invertible,
we can obtain ,él = vec{ﬁl,j} = (i’r{@l)*li’fy by the least squares method.
The solution ,Bl gets values passing through all data points at the observation
sites. Thus fi(z) in (4.1) is an interpolation function. As an extension, let us
consider the interpolation method by penalized least squares. The penalized least
squares solution is 8} = vec{,@f’i} = (®87®, + Q) 1®Ty. The value A should be
selected appropriately. Note that the penalized least squares becomes the ridge
regression method by setting @ = I.

The second approach is to obtain the coeflicients 3; using the approximation
matrix ®] = [®,(z; - z;)]i=1,...,n,j=1,..,m Which consists of m(< n) selected sites
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among all observation sites n whereas the interpolation method uses all obser-
vation sites for matrix ®;. Thus, the least squares estimator ,Bl = VeC{Bl,j} =
(®3T®3)"181Ty provides an approximation field of fi(z). But when the se-
lected sites are located with some gaps over the sphere, the coefficients ,Bl by
least squares estimation may not be stable because some outliers can have pro-
found influence on ,@1. Moreover, when some stations are very closely located, the
coefficients ﬁl may not provide stable estimates due to multicollinearity. Thus,
we suggest the ridge regression estimation as a shrinkage estimation method for
more stable coefficients, BI = vec{B{’i} = (®17®7 + M) ®1Ty. The value )
can be decided from the minimization of

GCV(N) = RS
{311 — ha(N)]}

where the hi;()\) are the diagonal elements of H(\) = ®%(®1T &% + \I)~1&37.
112 P 1

5. APPLICATION TO TEMPERATURE DATA

In this section, we apply the proposed network design, bandwidth selection,
and preprocessing to construct multi-scale SBF representations for average winter
temperature of year 1970-1971 shown in Figure 1.1. In addition, we perform
multi-resolution analysis to obtain global components f;(x) and local components
ri(z) from a multi-scale SBF representation.

The multi-scale SBF representations for the 1970-1971 average winter global
temperature with different network design, bandwidth selections, and preprocess-
ing are displayed in Figures 5.1 and 5.2. Among all combinations, in Figure 5.1,
we employ modified Gottelmann’s regular grid with six levels for network design,
and the bandwidths 1 = 0.97, 9, = 0.95, n3 = 0.90, n4 = 0.81, 75 = 0.67, and
ne = 0.45. As preprocessing, the interpolation method by penalized least squares
(top panel) and the approximation approach by least squares (bottom panel) are
adapted for obtaining f1(z). In Figure 5.2, we use the rectangular reduced grid,
the bandwidths (m; = 0.97, 2 = 0.93, 3 = 0.88, 4 = 0.80, n5 = 0.65, and
ne = 0.40), and the interpolation method by least squares (top panel) and the
approximation approach by penalized least squares (bottom panel).

As expected, all multi-scale SBF representations capture local activities in
some regions such as Siberia as a cold place and North-west of Australia as a hot
spot as well as the global trends. However, as you can see, the results are varying
with the choice of network design, bandwidth selection, and preprocessing. In
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FIGURE 5.1 Multi-scale SBF representation for 1970-1971 average winter temperature with the
network generated by the modified Géttelmann’s regular grid. The result in top panel is adapted
by an interpolation method by penalized least squares, and the bottom one is implemented by an

approximation approach by least squares.

general, the multi-scale SBF representation with PLS interpolation performs well
for detecting local activities from the global trends. Comparing between regular
grid and reduced grid, activities near equator are similar but patterns are quite
different near the south and north poles.

Figure 5.3 shows global components fj(z) and local components r;(z) for
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FIGURE 5.2 Multi-scale SBF representation for 1970-1971 average winter temperature with the
network generated by rectangular reduced grid. The result in top panel is adapted by an interpo-
lation method by least squares, and the bottom one is implemented by an approrimation approach
by penalized least squares.

the multi-scale SBF representation in the top panel of Figure 5.1 generated by
the multi-resolution analysis. As you can see in Figure 5.3, we obtain various
representations of a field f(z) according to level of resolution. As the level of
resolution [ increases, the resulting approximation tends to represent only global
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FIGURE 5.3 Multiresolution analysis of the multi-scale SBF representation in the top panel of
Figure 5.1, fi(z). Note that the field fi(z) is decomposed as fi(z) = fe(z) + ri(z) + r2(x) +
r3(z) + ra(z) + 5().

patterns of a field.

Spherical smoothing splines as a traditional approach provide a tempera-
ture reconstruction in Figure 5.4. As seen, the resulting fit determined by single
smoothing parameter tends to be uniformly smooth and only represents the global
trend with ignoring local phenomena. Thus, the traditional approach which de-
pends on single-scale parameter may not be effective for representing various
activities of the temperature field.
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FIGURE 5.4 Single-scale representation by spherical smoothing splines for 1970-1971 average
winter temperature. The result is adapted by thin plate spline method and single smoothing
parameter is chosen by generalized cross-validation.

6. CONCLUSION

To ensure the stability of the multi-scale SBF representation and the corre-
sponding multi-scale analysis, practical implementation of the method requires
properly chosen bandwidths of SBFs and networks, and an appropriate prepro-
cessing which obtains initial coeflicients from scattered data. In this paper, we
have proposed automatic procedures for network design A; and bandwidth se-
lection 1. The proposed method is a kind of non-adaptive approach which does
not depend on the response variable. We focus on a systematic way to make
the best use of the advantage of a fast algorithm. This paper also discusses sta-
tistical estimation methods for initial coeflicients from scattered data based on
approximation and interpolation approach.

In the experimental study for global surface air temperatures, we have shown
that multi-scale SBF representations are very powerful for detecting local activi-
ties as well as extracting global trends of temperature fields that cannot be easily
detected by the traditional spherical smoothing spline method.
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