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ON STRICT STATIONARITY OF NONLINEAR ARMA
PROCESSES WITH NONLINEAR GARCH INNOVATIONS'

O. LEg!

ABSTRACT

We consider a nonlinear autoregressive moving average model with non-
linear GARCH errors, and find sufficient conditions for the existence of a
strictly stationary solution of three related time series equations. We also
consider a geometric ergodicity and functional central limit theorem for a
nonlinear autoregressive model with nonlinear ARCH errors. The given
model includes broad classes of nonlinear models. New results are obtained,
and known results are shown to emerge as special cases.
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1. INTRODUCTION

In the last three decades, there were many papers in the literature discussing
the stationarity of various types of nonlinear time series models such as Priestley
(1980), Nummelin (1984), Tong (1990), Tjgstheim (1990), Meyn and Tweedie
(1993), etc. The typical nonlinear ARMA(p,q) model is given by

Yt = ¢(yt—1a Yt—25- -y Yt—pr €t—1,. - -, et-—q) + ey,

where {e;} are independent and identically distributed (7.¢.d.). While this model
has constant variance, conditional variances of many types of economic and finan-
cial data depend on past information. The most well known example of stochastic
volatility model is ARCH (autoregressive conditional heteroscedasticity) process,
which was introduced by Engle (1982) to explain the time series with conditional
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heteroscedastic variances. The ARCH model was extended to generalized ARCH
(GARCH) time series by Bollerslev (1986). As another extension of the ARCH
process, a class of autoregressive models with ARCH errors proposed first by
Weiss (1984) and Tong (1990) suggested a threshold model with an ARCH er-
ror, which is entitled the SETAR-ARCH model. The family of ARCH models
have proven useful in financial applications and have attracted great attention
in economics and statistical literature (see, for instance, Bollerslev et al., 1992;
Bougerol and Picard, 1992; Guégan and Diebolt, 1994; Lu, 1996; Li and Li, 1996;
Wong and Li, 1997; Ling, 1999; He and Terasvirta, 1999; Francq and Zakoian,
2000; Ling and McAleer, 2002; van Dijk et al., 2002; Hwang and Kim, 2004).

In the GARCH model, conditional variance is a linear function of the squared
past disturbances and/or past observations, but some data show that this linear-
ity is not adequate and the conditional variances are asymmetric conditional on
previous returns (see, e.g., Rabemananjara and Zakoian, 1993; Liu, et al., 1997).
In order to accommodate the asymmetric conditionality of conditional variance,
the double threshold AR-ARCH model and the double threshold ARMA-GARCH
model were introduced (see, Li and Li, 1996; Ling, 1999).

In this paper, we consider a nonlinear ARMA models with nonlinear GARCH
innovations, which is a natural extension of double threshold ARMA-GARCH
model. This model combines the advantages of the nonlinear ARMA model which
targets on the conditional means given the past and the nonlinear GARCH model
which concentrates on the conditional variances given the past. Therefore, this
model is capable of modeling time series by changing the conditional mean and
the conditional variance via nonlinear methods.

Let {y:} be the nonlinear autoregressive moving average time series with
nonlinear GARCH errors given by

Yt = O(Yt—15- -+ Yt—ps Et—1, - - -, Et—q) + ¢, (L1)
1

&t = hfet, (1.2)

ht = g +¢(Et—1a"'aEt—T‘aht—la"'aht—s)7 (13)

where ¢ and 1 are real-valued measurable functions defined on RP*t? and R™9,
respectively, p > 0, ¢ > 0,7 > 0,s > 0,09 > 0, and {e;} is a sequence of
1.4.d. random variables with mean zero and unit variance. The process obtained
by (1.1)—(1.3) includes various well known nonlinear models such as nonlinear
ARMA models with constant variance, TARMA, (5)-ARCH, SETAR-ARCH,
double threshold ARMA-GARCH, asymmetric power GARCH model, augmented
GARCH model, etc.
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Our aim is to derive sufficient conditions for stationarity, geometric ergodicity
and finiteness of moments of the model given above. We study the stationarity of
y; by applying the Tweedie’s result (Tweedie, 1988; Tong, 1990) to the associated
Markov chain and then derive desired results from that for the Markov chain.

Obtained results improve and extend those given earlier by, for example,
Brockwell et al. (1992), An and Huang (1996), Ling (1999) and Lee (2000).

For terminologies and relevant results in Markov chain theory, we refer to
Meyn and Tweedie (1993).

Section 2 presents the main results and their proofs are in Section 3. Several
examples are given in Section 4.

2. MAIN RESULTS

Consider the following nonlinear autoregressive moving average model with
nonlinear GARCH innovations:

Yyt = ¢(yt—1, ey Yt—py Et—1y - .- ,€t—q) + &,
&t =V hi - et,

hy = ag +Ylet—1, ..., €t—r, Pe—1, ..., hi—s),

where ¢ and 1) are real-valued measurable functions on RP*? and R"** respec-
tively, p>0, ¢>0, 7r>0, s>0, ¥» >0, ap > 0, and {e;} is a sequence of i.i.d.
random variables with zero mean and unit variance.

To avoid unnecessary technicalities, we assume without loss of generality that
g>r. Let {yo,y-1,---+Y=p+1,€0,---,E—g+1,Po, ..., h_sy1} be arbitrarily speci-
fied real-valued random variables independent of {e;; ¢t > 1}.

Denote

Xt = (yt, vy Yt—p+15Ety o o oy Et—q+1, 6?, e 76%—r+1’ ht, ey ht_s+1)t, (24)
then {X;;t > 0} is a Markov chain with state space S which is given by

S = {(ul,...,up,zl,...,zq,zi?,...,zf,'wl,...,'ws)t | ui, 25, wr, € R,
1<i<p, 1<j<gq, 1<k<s}

We make the following assumptions:
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(A.1) There exist constants A,0 < A < 1, § > 0, and ¢; such that for (z1,...,
Tptq)t in RPYY
(Bo1,- o)l <X s {osl) + 0 max {oprilt +1. (25)

(A.2) There exist constants o; > 0, §; > 0, ¢ = 1,...,7, j = 1,...,s with
Y im1 @i+ B <1 and c; such that for (z1,...,Zr4s)" in R™FS,

T s
¢($1, <o ,$r+s) < Zazxf + Zﬂjlxr+]| + C2. (26)

i=1 j=1

(A.3) {X;} is a Feller chain, i.e., for each bounded continuous function g,
E[g(X:)|X¢—1 = x] is continuous in x.

REMARK 2.1. (Feller continuity). X in (2.4) can be rewritten as an iterative
model:
X¢ = F(X¢-1,€t),

where F' is the proper measurable function on S X R to S. If ¢ and ¥ in (2.1)
and (2.3) are continuous, the function x — F(z,e) is continuous for any e, and
hence, by dominated convergence theorem, {X;} is a Feller chain.

Followings are our main results.

THEOREM 2.1. Under the assumptions (A.1)-(A.3), there exists a stationary
solution (y, ;) satisfying (2.1)-(2.3), and Er, (|y:|) and Er,(e?) are finite, where
m and Ty are the stationary distributions of {y:} and {e:}, respectively.

COROLLARY 2.1. In addition to the assumptions (A.1)-(A.3), suppose that
the Markov chain {X:} is aperiodic p-irreducible. Then {X;} is geometrically
ergodic.

Unfortunately, it is not an easy task to prove the irreducibility of {X;} when
p>1landg>1.

To obtain the geometric ergodicity, we restrict ourselves to the nonlinear
autoregressive model with nonlinear ARCH errors, that is, the model given by
(2.1)—(2.3) with ¢ = s = 0, and define Markov chain in a different way as follows:

Zt — (yta Yt—1,--- ’yt—p—’l‘-i-l)t' (27)
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Here if y;, t = —p—7r +1,...,—1,0 are arbitrarily defined random variables
independent of {e; : ¢ > 1}, then {Z;} is a Markov chain.

For the remaining part of this section, we assume that ¢ = s = 0.

Now we need additional assumptions on e; and the function :

(A.4) The distribution of e; is absolutely continuous with a probability den-
sity function ¢(-) which is positive almost everywhere (with respect to the
Lebesgue measure p1) and Fle|™ < oo for some m > 0.

(A.5) h(z)/||z] — O as ||z|| — oo where h(z) is given by h(z1,...,2p4r) =
Y(wy,...,w), wi = 2 — G(Z+1,..,2%i4p), 1 <4< roand ||| s
any norm on RPT" .

THEOREM 2.2. Suppose (A.1), (A.3), (A.4) and (A.5) hold. Then Z; is a
geometrically ergodic Markov chain and Ep, |y:|™ < oo with a unique invariant
probability m of {y:}.

The assumption (A.3) in Theorem 2.2 is used to ensure that every compact
set is small. We can obtain that property by adding some mild conditions on

q(-), ¢ and ¥.

THEOREM 2.3. In addition to (A.1), (A.4) and (A.5), we assume that q(-)
is lower semi-continuous and ¢ and i are bounded on compacts. Then the con-
clusion of Theorem 2.2 holds.

When a Markov process {Z:} given in (2.7) is geometrically ergodic, we can
obtain a class of functions under which the functional central limit theorem holds.
Let 7 denote the invariant initial probability of {Z;} and let || - ||z be L?>-norm.

THEOREM 2.4. Suppose the assumptions in Theorem 2.2 (or Theorem 2.8)
hold. Let V be the test function given in (3.21) in the proof of Theorem 2.2.
If f2 < V + K for some constant K > 0, the functional central limit theorem
holds for f, that is, Ya(t) = (1/\/—)2["” (F(Zx) — 7(f)), t > 0 converges in
distribution to a Brownian motion with mean zero and variance parameter ||g||3—
|Pgl3, where g~ Pg = f ~(f), Po(e) = [ 9(u)P(z,dy) and n(f) = [ fdr. In
particular, the functional central limit theorem holds for every bounded measurable
function f.
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3. PROOFS

For the convenience of readers, we state the next theorem.

THEOREM 3.1. (Tweedie, 1988). Suppose {X:} is a Feller chain with tran-
sition probability function P(z,dy).

(a) If there exists, for some compact set A, a nonnegative function g and an
€ > 0 such that

" P(z,dy)g(y) < g(z) —¢, z€ AS, (3.1)

then there ezists a o-finite invariant measure p for P with 0 < pu(A) < oo.

(b) Further, if

/Au(dx) { " P(a:,dy)g(y)} < 00, (3.2)
then u is finite.
(c) Further, if

| Ple.digt) <o) - f@), wea, (33)
then p admits a finite f-moment.

The main parts of the proofs for Theorem 2.1 to Theorem 2.3 in Section 2 are
to construct a proper test function g(-) (or V/(-)) under which (3.1)-(3.3) hold.

PROOF OF THEOREM 2.1. Define a test function g : RPT9+"+¢ — R by for

any (x1,22,. .- 7$p+q+r+s)t in RpHatrts,
qg+r+s
9(@1, -, Tpygirts) =1+ 1‘2%{%@1” + Z VotilZpil (34)
- =1

where ~;, t=1,2,...,p+¢q+r+s are to be defined later.

For any x = (ul,.‘.,up,zl,...,zq,zf,...,zf,wl,...,ws)t € S, we have that
E[9(Xy)|X¢-1 = x]

= Eg{é(u1,...,up, 21,...,2¢) + €, U1, ..., Up_1,

2 .2 2 _
€ty Z1y- -1 2q—1,E5, 21 -y Zo_1s Bty w1, ., Ws—1 HXKi—1 = X]
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< 1+ maxfyAmax{lusl, ., [upl}, vl -, plip-al}
mn0max{lanly..., 2]} +pralaal + -+ il
r—1
Hprar1 Blef Keo1 = X] + Y Yprgriri 2 + Yprarriihe
=1
s—1
+ Y Yprgtrrri Wi+ (1 + 1) Elled X1 = %]+ erm
i=1
<I+II+II1+K, (3.5)
where
I = max{mAmax{|ui],..., |up|}’ Yeluil, ... 77P|up—1]}7 (3.6)
IT = mOmax{|z1],...,|2|} + Yptalza| + - - + Yprgl2g-1l, (3.7
T s r—1
IIT = (Yp+q+1 + Yptatr+1) (Z @z + Zﬁiwz) + D Yotatii %
=1 =1 =1
s—1
+ Z Yotgtr+1+i Wi + (11 + Yp+1)V Py (3-8)
i=1
K =14 cm + (a0 + c2)(p+g+1 + Yptgtr+1)- (3.9)

IIT and K are obtained from assumptions (A.2), E(e?) = 1 and Ele;| < 1.
We now choose v; > 0 arbitrarily and define

o= A1, k=23,....p. (3.10)
Then
I = max{mAmax{lul,..., [up|}, v2lurl,- . ., yplup-l}
= A max{p max{fual, .., [upl}, mlual, -, Yp1liip1]}
Y max{vp|up|, y1|u1l,- - ., Yp—1|tp-1]}- (3.11)

The last equality in (3.11) follows from the fact that v, < vy for 1 < k < p.
Next choose 7 in (0, 1) and fix, and define yp41,...,Vp+q by

1 i+1 )
Vobqei = (5> Q+n+-+n)mb, i=01,...,¢q—1.  (3.12)
It is obvious, from (3.7) and (3.12), that

II < (8 +p2)la1] + (MO +vpe3)l22] + - + (M0 + Wprg)|zg-1] + MB2]

q
= 772’7p+i|zi|- (3.13)
i=1
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To consider part 111, we define an (r + s) x (r + s) matrix A by

o1 az e ar M B2 e Bs
A= In_pyxe-1)  Op-1)x1 O@¢—1)xs
ay az e ar B B2 e fBs
Os—1)xr Is—nyxs—1)  Os—1)x1

and modify the method adopted by Ling (1999).

Since det(z] — A) = 27 —2°) [ ouz" "t — 2"y 5, Bz, from the as-
sumption Y ._; o + > i ; Bi < 1, we obtain that all roots of the characteristic
polynomial of A lie inside the unit circle, that is p(4) < 1, where p(A) is the
spectral radius of A. It is known that if p(A) < 1, then (I — A) is invert-
ible and (I — A)~! = 3°3°, AF (see, e.g., Horn and Johnson, 1990). More-
over, since each component of A is nonnegative, we can choose a vector M; > 0
such that M = (I — AY)™1M; = My + 352, (AY)FM; > 0, and hence we have
(I — AYM = M; > 0. Here a vector M > 0 means that every component of M
is positive. Take

(Yo+g+1> Ypta+2s - - - ’7p+q+r+s)t =M.
Then
IIr = XgAtM + ("Yl + ’Y}H—l)\/ ht
= xtM — x4(I — AHM + (71 + Yp+1)V R, (3.14)
where x2 = (22,...,22,w1,...,ws)’.
For simplicity of notation, let g1(x1) = maxi<i<p{¥ilus|} + Y ooj Yp+il2| for
X1 = (U1,y...,Up, 21,...,24)" and let o/ = max{A\/?,n} < 1.

Combining (3.5), (3.11), (3.13) and (3.14), we have that

Elg(X;)|X¢-1 = X] (3.15)

< n'g1(x1) +xEM — xb(I — AYM + (1 + 1) Vhe + K

= g(x) — (1 —7)g1(x1) = x5(I — AYM + (m + Yps)Vhe + K =1

) (1= E=m)eGa) + x5 - AWM () Ve + K~ 1

=90 (1= ey ¥ 969 )
Let

m1 = min{all components of M} > 0,
my = max{all components of M} > 0,

mg = min{all components of M;} > 0
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and for k > 0, define By, = {x € S |g(x) < k} and B =S — By.
For x = (x},x})* € B¢, we have following two inequalities:

(1-n)g1(x1) + x5(I — A)M _ min{(1 —n'), ma}(g1(x1) + 22+ Y wi)
g9(x) ~ 1+max{l,mo}(g1(x1) + 327 + 3 w;)
5, min{(1 —7'), ma}
2max{1, mz}
>0 (3.16)

and

(m+p+1)Vhe + K -1 - (71 + Y1)y 202+ 2 wi + KT

g(x) 9(x)

(M + W)/ 22+ D wi + K (317)

= min{l,m }o1(x1) + 2 22 + > w;)’

where K' = (1 + Yp41)(voo + /c2) + K — 1.

Therefore, from (3.15)—(3.17) and the fact that we may choose k so large that
for € B{, the last term of (3.17) is arbitrary small, there exist € < 1 and k such
that

E[g(X4)[Xs-1 = x] < (1 — €)g(x), x € BE. (3.18)
Clearly,
seué) Elg(Xy)|X;—1 = x] < 0. (3.19)

Therefore, (3.18) and (3.19) imply that (3.1)—(3.3) in Theorem 3.1 hold with a
compact set By, and the existence of stationary X; is shown.
Moreover, by (3.18) and the part (c) of Theorem 3.1, we have that

/ g(x)m(dx) < oo, (3.20)

where 7 is a stationary distribution of {X;}. Thus, from (3.20), [ |y|dm < oo
and [e?dms < oo where m; and my are the first and (p + g + 1)** projection
measures of 7 respectively. This completes the proof. |

PrROOF OF COROLLARY 2.1. It is obvious that {X;} is aperiodic. The con-
clusion follows from Theorem 2.1 and Theorem A1l.5 (p. 457) in Tong (1990).
O
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Let B* denote the Borel sigma field on R*, and let p, be the Lebesgue measure
on (R, B*), k=1,2,....

PROOF OF THEOREM 2.2. By definition of h(), ¥y = é(ys—1,...,yt—p) +
(ap + h*(Zy-1))%es, Zi—1 = (Ye-1,- - -, Yt—p—r)’. Define

p+r

z,y) = _qu(y), (z,y € RP*7),

where for a;(1 < j < p+r) such that

a1 = {ag + A% (21, .., 2pr)} 2,

1 -
a; = {a0 + R2(Yj—1, -, Y1, 21, - > Zprr—ji1)} 2, 2< i< p+,
g;(y), 1 <j <p+r are given by

a(y) = arglar{ys — ¢(z1, ..., )},

g (y) = a;qla;{y; — 6(yj-1,-- - v, 21, -, Zp511)}], 2< 5 <p,

4;(y) = ajdlaj{y; — Wj-1,. -, yj—p)}, P+1 <G <p+r.
Then u(z,y) is a conditional density of Zp+,. at y given Zy = z, and hence,
by assumption (A.4), P(Zpyr € A | Zg = z) = [, u(2,¥)tip+r(dy) > 0 for all
z € RP*" and A € BP™" with ppir(A) > 0, which implies that {Z;} is ppir-
irreducible.

Now define a test function V : RP™™ — R by for z = (21, ..., 2p4s),
V(z)=1+ <m<aa§_ {rilz™} (3.21)

where m > 0 is given in assumption (A.4), 3 > 0 is chosen arbitrarily and
Yk, kK =2,...,p+r are taken by v, = ()\m)l/”’yk_l recursively.

We first consider the case that 0 < m < 1. In the same manner used to obtain
(3.11), we have

E[V(Zt)IZt_l = Z]
< max{mA™ max {|z["}, velal™, - Yprrlzpar-11"}
1<i<p

+1 (a0 + h%(z))  Eleg|™ + el + 1

< 61<m<ax {rilzil™} + (oo + hZ(Z)) 2 Eles|™ +mcl” +1

(1 + max {'y,[z,|m}> (0 + A(2)), (3.22)

1<i<p+
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where § = (A™)1/P and

_ mElef™eg +h(z)™) + e +1-6

A max{la )

Since (max{v]|z|™})Y™, m > 0 is a norm on RP*" and norms on RP*" are
equivalent, (max{y;]z|™})¥™ > c||z| for some ¢ > 0, and hence by assumption
(A.5), we have that A(z) — 0 as ||z|| — co. Thus there exist € > 0 with § +e < 1
and M > 0 such that

Az)<e if |z|>M (3.23)
and therefore,
EV(Z)|Zs—1 = 2] < (6 +€)V(2), |z]| > M. (3.24)

Now suppose m > 1. For simplicity of notation we assume that ¢; = 0. The case
c1 > 0 is entirely analogous. Note that

1621, - - - 2p) + (@0 + h2(2)) Zes|™

< |é(21, -5 2)[™ + R(z, €0), (3.25)
where
[m)
Rz = 3 (") 1617 lfan + (@) ers
i=1

1™ [(ao + h*(2)) 2,
(m]
2 ([T?]) (1 (e + h(2)) e (3.26)
i=1
and [m] is the Gauss number of m and s = m — [m] > 0.
From (3.21) and (3.25) we have

E[V(Zt)th..l = Z]
< max{m|@|™, v2l2]™s - - s Yprrl2ptr—1|"} + NE[R(z, €1)] + 1
< dmax{v;|zi|™} + i E[R(z,e:)] + 1. (3.27)

On the other hand, for 1 <3 < [m)],
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91"~ El(0 + @) e _ 27N Elesfi(ad + |h(z)[") max{|z(™)

max; {v;|z|™} - C"““Z“m
21 Blei A o + [h(2)]' | max|zi™}
cm Iz]” [
— 0 as [z| — oo. (3.28)

By the same argument, the fraction of the expectation of the remaining terms of
(3.26) and ||z||™ goes to zero as ||z|| — oo and hence

E[R(Z, et)]

—_— 50 as |z| — oc. 3.29
max{]za™ ]| (3.29)

Combining (3.27)—(3.29), we have that, for € > 0 given in (3.23)
EV(Z)|Zi-1=2] < 0+ )V(z) if |zl > M (3.30)
for sufficiently large M’ > 0. Clearly,

sup E[V(Z;)|Zi-1 = 2] < o0. (3.31)
llzll <M’

Since {Z;} is a ppir-irreducible Feller chain, every compact set is small. There-
fore, by (3.24), (3.30), (3.31), and Theorem A1l.5 in Tong (1990), geometric er-
godicity of the process is obtained. Er,|y:|™ < oo follows from (3.30) and part
(c) of Theorem 3.1. O

PrOOF OF THEOREM 2.3. Suppose that ¢ and v are bounded on compacts
and g(-) is lower semi-continuous. Then for every A € BP*" such that p,4-(4) > 0
and every compact set B C RPt", we have

inf | u(z,y)upsr(dy) > 0.
z€B [ 4

Hence B is small, and the results in Theorem 2.3 follow. O

PrOOF OF THEOREM 2.4. From (3.24), (3.30) and (3.31), we have, for some
A< 1, b < o0 and compact set C,

PV (z) < AV(z) + bl¢ (3.32)
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and (V) < oo. Choose a large K such that (1 — A}/2)K1/2 > 1 and take
Vo =V + K. Then by (3.32) and the conditional Jensen’s inequality, we obtain,
for some by < o0, X . . X
PVZ < Vg — (1- A1)V +bilc.

Suppose that |f| < Vbl/ 2. Then f € L%(r) and there exists a function g € L2(n)
such that f —x(f) = g — Pg. Since g(Z;) — Pg(Z;-1) is a sequence of martingale
differences, the functional central limit theorem holds for f (for details, see, e.g.,
Billingsley, 1968, Theorem 23.1; Glynn and Meyn, 1996, Theorem 2.3). Suppose

f is bounded and measurable with f < K for some Ky < co. Then by taking
K > K2, we have f2 <V + K and hence the conclusion follows. O

4. EXAMPLES

For the following examples, we assume that {e;} is a sequence of i.i.d. random
variables with mean zero. If there is no specification, let Ee? = 1. In each case,
the corresponding Markov chain is assumed to be a Feller chain, if necessary.

ExaMPLE 4.1. (NARMA). The classical nonlinear autoregressive moving av-
erage model with order p and q is given by

Yt = ¢(yt—l7 <oy Yt—pr €t—1,- .-, et—q) + et (41)

with nonlinear measurable function ¢ : RPt¢ — R. The above model has been
studied by many authors such as Tong (1990), Tjgstheim (1990), An et al. (1996)
and Lee (2000). Taking r = s = 0 in (2.3) yields (4.1). Theorem 2.1 ensures the
existence of a strictly stationary solution of (4.1) under the assumption that for
some A < 1 and some constant 8,

|p(u1, ... up, 21,...,2g)] < Agfg){[uﬁ} + Glrgza%(q{]m} (4.2)

Note that if |p(u1, ..., Up, 21, .., 2g)]| < Dby Ni|wil+ D7, 6]z with 3°F_, N

< 1, then (4.2) holds. Threshold ARMA(p,q) model is a special case of (4.1). In
this case ¢ is given by

A(Yt-1,- -, Yt—pr €1, - - -, Et—g)

l . p - q .
= Z (a(()J) + Z agj)yt—i + Z IBz(J)et*i) I(aj—lﬁyt—d«zj)’ (4.3)
=1 i=1

=1
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where az(j) and ﬁz(j) are constants, d € {1,...,p}, and —c0o =ag < a1 < --+ <
a; = 00.

Applying Theorem 2.1 yields that max; > >, |a§j )| < 1 is sufficient for the
existence of a strictly stationary solution of (4.3). Note that the stationarity
condition does not depend on the coefficients of moving average part ,ng ), 1<

i<pand 1 <5<l

ExAMPLE 4.2. (NAR-threshold # ARCH errors). Suppose that {y:} is gen-
erated by

Yt = ¢(yt—17 e ayt—p) + €t (44)

€t=\/h_t'€t,

l

r
‘ N o
he = Z (a(()J) n Za,(])et-ﬁ-i> Le, _selb;_1,b;))> (4.6)
j=1 i=1

where d € {1,...,r}, aéj) > 0, agj) >0, —c0o=b<b < --<bh =00
and 0 < 3 < 1. Suppose the function ¢ satisfies the assumption (A.1). Take
(]), 1=0,1,...,7. Then

Q; = maX; o,

r
hy < ao + Z % [Ys—i — S(Yt—im1, - -, Yemimp)|*P

=1

and

T
h(zly' . ,zp-i-’r‘) < Z\/a—’t |zi - ¢(zi+la- . az’H-p)l'B
i=1

-
= [],5.18 Jé] 8
< 3V [l 4 ¥ Gl )]
==

Since 0 < B < 1, {h(z1,---, 2p4r) }/ (215 - s 2prr)ll = O 85 [[(21,- .5 Zp4r)]| —
0o. Therefore if e; satisfies the condition (A.4) with a lower semi-continuous
density g(-), then {y:} is geometrically ergodic and En, |y:|™ < 0.

ExAMPLE 4.3. (Double threshold ARMA-GARCH). The process {y:} is said
to be a double threshold ARMA-GARCH model (DTARMACH) if it is defined

by

. p . q .
e = ¢ + > ¢ ye_i + 291(])61:—1 +e aj-1 Syp <aj, (47)

&t = \/h_t - €, (48)
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S
= a(k) + Za(k)ef i+ Z/gi(k)ht—ia bp—1 < gt_g < bg, (4.9)

i=1
where j=1,...,0l1, k=1,...,ls, —oco=qap << q =00, —00=bp < - <
b, = oo, ¢1(.j), Gz(j) , agk), Bz-(k) are constants with a((,k) > 0, al(k) >0,1<i<
T, ,B](-k') >0, 1 € j < s. This model is studied in Li and Li (1996), Liu et al.

(1997) and Ling (1999).
(4.7) can be rewritten as

L ) 4 ] q .
Y= Z <¢(()J) + Z ‘bz('])yt—i + Z 9§J)€t_i> Ly, _v€laj_r,a)) T €5

j=1 i=1 i=1
and hence

h

. p B
Z(d)g) + Z d’z(’J)yt—i)I(yt—bG[aj—1,aj))

j=1 i=1

< e 5+ (K %, Z l¢>“>u) (el [}

T 1<5<h

On the other hand,

he < max{a( )} + Zmax{a( )}et i+ Zmax{ﬂ(k)}ht i+ e

=1

Therefore if max; Y ©_ |¢(J)| <land ), ma.xk{a( )} +3i maxk{ﬂ( )} <1,
then the assumptions (A.l) and (A.2) hold and hence, by Theorem 2.1, a strictly
stationary solution satisfying (4.7)—(4.9) exists. Compare this result with that of
Ling (1999), where > F_, max; |¢(J )l < 1 is required.

ExaMPLE 4.4. (MTAR with GARCH errors). The TAR model is one of the
most widely used models to explain the asymmetric behaviors of economic and
financial variables. But some authors pointed out that many economic variables
are asymmetric in that they respond more sharply to negative shocks than to
positive shocks. Enders and Granger (1998) proposed a modified version of the
TAR model, the momentum TAR (MTAR) model given by

P1Yt—1 + €t Yp—1 — Y2 >0
Yt = { (4.10)

P2yt—1 + €ty Ye—1 — Ye—2 <0,
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where {&;} is i.i.d. MTAR model is studied in Caner and Hansen (2001), Lee and
Shin (2000), Shin and Lee (2001), etc. Consider the MTAR model with GARCH
errors, that is {y:} is given by (4.9) where {e;} is generated by (2.2) and (2.3).
Here

|p(u1, u2)| = |prurliu, —uy>0} + P21 [y, —uy<o}l
max{|p1], [p2]} - Jul.

AN

Therefore if max{|p1|, |p2|} < 1 and (A.2) hold, then by Theorem 2.1, a strictly
stationary solution of (4.10) exists.

REMARK 4.1. We can derive a sufficient condition for Feller continuity of
each model considered in Example 4.1-4.4. For instance, if ¢ in (4.1) is continu-
ous, {Xs} = (¥t,...,Yt—p+1,€t, - - -, €t—g+1) has the Feller property. In particular,
¢ in (4.3) is continuous if for given X;_,

. p . q . . p . q .
a(()J) + Z ag’)yt_i + Z ﬂi(J)et—i = Oq()]H) + Z aﬁ’“)yt_i + Z ﬂ,;(]+1)et-i
i=1 i=1 i=1

=1

holds whenever y;_3 = a;, j = 1,...,1 — 1. We can give analogous relations to ¢
and ¢ in Example 4.3. Compare these conditions with the assumptions for Feller
continuity given in Ling (1999) and Liu et al. (1997). Cline and Pu (1998, 2002)
studied a process generated by a continuous nonlinear function and threshold
ARMA(p,q) model, and found sufficient conditions for chains to be an aperiodic
y-irreducible T-chain. Note that if the process is aperiodic 9 -irreducible T-chain,
then every compact set is small.
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