단순 엘레멘트 인버스를 이용한 DCT/DFT 하이브리드 알고리즘

DCT/DFT Hybrid Algorithm using Simple Element Inverse

  • 이광재 (한려대학교 멀티미디어정보통신공학과) ;
  • 박대철 (한남대학교 정보통신공학과) ;
  • 이문호 (전북대학교 전자정보공학부) ;
  • 신태철 (전북대학교 전자정보공학부) ;
  • 진주 (전북대학교 전자정보공학부)
  • 발행 : 2007.06.30

초록

본 논문에서는 하이브리드 구조에 의한 DCT/DFT 행렬의 새로운 표현을 제시한다. 엘레멘트 인버스 소행렬 분해 알고리즘에 근거하여 DCT와 DFT가 동일한 반복 연산 패턴을 갖고 있음을 보이며, 몇몇 대각행렬을 이용한 하이브리드 구조를 개발한다.

In this paper, we present new representation of DCT/DFT matrices via one hybrid architecture. Based on a element inverse matrix factorization algorithm, we show that the DCT and DFT have a same recursive computational pattern, and we can develop an hybrid architecture by using some diagonal matrices.

키워드

참고문헌

  1. K.R. Rao, and P. Yip. Jones, Discrete Cosine Transform Algorithms, Advantages, Applications, Academic Press, USA, 1990
  2. K.R. Rao, and J.J. Huwang, Techniques & Standards for Image Video & Audio Coding, Prentice Hall, USA, 1996
  3. M.H. Lee, 'Simple systolic arrays for discrete cosine transform,' Multidimensional system and processing, no.1, pp.389- 398, 1990, Kluwer Academic Publishers
  4. M.H. Lee, 'On computing 2-D systolic algorithm for discrete cosine transform,' IEEE Trans. on Circuit and systems, vol.37, no.10, Oct.1990
  5. Seung Son Kang, and Moon Ho Lee, 'An expanded 2-D DCT algorithm based on convolution,' IEEE Trans. on Consumer Electronics, vol.39, no.3, pp.159-165, 1993 https://doi.org/10.1109/30.234577
  6. N. Ahmed and K.R. Rao, Orthogonal Transforms for Digital Signal Processing, Berlin, Germany: Springer-Verlag, 1975
  7. M.H. Lee, 'High Speed Multidimensional Systolic Arrays for Discrete Fourier Transform,' IEEE Trans. on . Circuits Syst. II, vol. 39 no.12, pp 876-879, Dec.,1992 https://doi.org/10.1109/82.208584
  8. D.C. Park, M.H. Lee, and Euna Choi, 'Revisited DFT matrix via the reverse jacket transform and its application to communication,' The 22nd symposium on Information theory and its applications (SITA 99), Yuzawa, Niigata, Japan, Nov.30-Dec.3, 1999
  9. M.H. Lee, 'The Center Weighted Hadamard Transform,' IEEE Trans. On Circuits and Systems, vol. 36, no.9, pp.1247-1249, Sep. 1989 https://doi.org/10.1109/31.34673
  10. Chih-Peng Fan, Jar-Ferr Yang, 'Fast Center Weighted Hadamard Tranform Algorithm', IEEE Trans.on CAS-II, vol.45, No.3, pp.429-432, March. 1998
  11. S. R. Lee, J. H. Yi, 'Fast Reverse Jacket Transform as an Altenative Representation of N point Fast Fourier Transform,' Journal of Mathematical Imaging and Vision, KL1419-03, pp.1413-1420, Nov. 2001
  12. M.H. Lee, B. S. Rajan, and J.Y. Park, 'A Generalized Reverse Jacket Transform,' IEEE Trans. Circuits Syst. II, vol.48, no. 7, pp.684-690, July, 2001 https://doi.org/10.1109/82.958338
  13. M.H. Lee, 'A New Reverse Jacket Transform and Its Fast Algorithm,' IEEE, Trans. On Circuit and System, vol. 47. no. 1, pp.39-47, Jan. 2000 https://doi.org/10.1109/82.818893
  14. M.H. Lee, and Ken Finlayson, 'A simple element inverse Jacket transform coding,' IEEE Information Theory Workshop 2005, ITW 2005, Rotorua, New Zealand, 29 Aug - 1st Sept. 2005
  15. Chen, Wang, 'High throughput VLSI architecures for the 1-D and 2-D discrete cosine transforms', IEEE Trans. Circuits Syst. Video Technol., 1995