Fuzzy ideals of subtraction algebras

Young Hee Kim¹, Kyong Ah Oh¹ and Eun Hawan Roh²

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea
 Department of Mathematics Education, Chinju National University of Education, Chongju 361-763, Korea

Abstract

The notion of ideals in subtraction algebras and characterizations of ideals introduced by Y.B.Jun et al. [?]. Using this idea, we consider the fuzzification of an ideal of a subtraction algebra. In this paper, we define the concept of a fuzzy ideal of a subtraction algebra and study characterizations of a fuzzy ideal. We give some conditions to show that a fuzzy set in a subtraction algebra is a fuzzy ideal of a subtraction algebra. We investigate the generalization of some properties of a fuzzy ideal of a subtraction algebra.

Key words: subtraction algebra, ideal, fuzzy ideal, level ideal.

1. Introduction

B. M. Schein [?] considered systems of the form $(\Phi; \circ, \setminus)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [?]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [?] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [?] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [?], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. In this paper, we consider the fuzzification of an ideal, and define a fuzzy ideal of a subtraction algebra. We give characterizations of a fuzzy ideal.

2. Preliminaries

By a *subtraction algebra* we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

(S1)
$$x - (y - x) = x$$
;

(S2)
$$x - (x - y) = y - (y - x);$$

(S3)
$$(x-y)-z=(x-z)-y$$
.

Manuscript received Apr. 18, 2007; revised Jun. 11, 2007. (SA/070130.tex) 2000 Mathematics Subject Classification. 03G25, 08A72. Corresponding Author: yhkim@chungbuk.ac.kr (Young Hee Kim)

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [?], that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a-b)$; the complement of an element $b \in [0,a]$ is a-b; and if $b,c \in [0,a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true (see [?]):

(a1)
$$(x-y) - y = x - y$$
.

(a2)
$$x - 0 = x$$
 and $0 - x = 0$.

(a3)
$$(x-y)-x=0$$
.

(a4)
$$x - (x - y) \le y$$
.

(a5)
$$(x-y) - (y-x) = x - y$$
.

(a6)
$$x - (x - (x - y)) = x - y$$
.

(a7)
$$(x-y) - (z-y) \le x-z$$
.

- (a8) $x \le y$ if and only if x = y w for some $w \in X$.
- (a9) $x \le y$ implies $x z \le y z$ and $z y \le z x$ for all $z \in X$.

(a10)
$$x, y \le z$$
 implies $x - y = x \land (z - y)$.

(a11)
$$(x \wedge y) - (x \wedge z) \leq x \wedge (y - z)$$
.

Definition 2.1. ([?]) A nonempty subset A of a subtraction algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies:

- (b1) $a x \in A$ for all $a \in A$ and $x \in X$.
- (b2) for all $a,b \in A$, whenever $a \vee b$ exists in X then $a \vee b \in A$.

Proposition 2.2. ([?]) A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it satisfies:

- (b3) $0 \in A$.
- (b4) $(\forall x \in X)(\forall y \in A)(x y \in A \Rightarrow x \in A)$.

Lemma 2.3. An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \le y \Rightarrow x \in A).$$

3. Fuzzy ideals

In what follows let X be a subtraction algebra unless otherwise specified. Using Proposition $\ref{eq:proposition}$, we give the notion of fuzzy ideal as follows.

Definition 3.1. A fuzzy set \mathscr{A} in X is called a *fuzzy ideal* of X if it satisfies:

- (c1) $(\forall x \in X) (\mathscr{A}(0) \geq \mathscr{A}(x)),$
- (c2) $(\forall x, y \in X) (\mathscr{A}(x) \ge \min{\{\mathscr{A}(x-y), \mathscr{A}(y)\}}).$

Example 3.2. Conside: a subtraction algebra $X = \{0, a, b, c, d\}$ with the following Cayley table:

(1) Let \mathscr{A} be a fuzzy set in X defined by

$$\mathscr{A}(x) = \begin{cases} ni & \text{if } x \in \{0, a, d\}, \\ n & \text{otherwise} \end{cases}$$
 (3.1)

for all $x \in X$, where $m, n \in [0, 1]$ with m > n. Then $\mathscr A$ is a fuzzy ideal of X.

(2) Let \mathscr{B} be a fuzzy set in X defined by $0 \leq \mathscr{B}(d) < \mathscr{B}(b) = \mathscr{B}(\epsilon) < \mathscr{B}(a) < \mathscr{B}(0) \leq 1$. Then \mathscr{B} is a fuzzy ideal of X.

Proposition 3.3. Every fuzzy ideal \mathscr{A} in X satisfies:

$$(\forall x, y \in X) (x \le y \Rightarrow \mathscr{A}(x) \ge \mathscr{A}(y)). \tag{3.2}$$

Proof. If $x \le y$, then x - y = 0, and so

$$\mathscr{A}(x) \geq \min\{\mathscr{A}(x-y), \mathscr{A}(y)\}\$$

= $\min\{\mathscr{A}(0), \mathscr{A}(y)\}\$
= $\mathscr{A}(y).$

This completes the proof.

Proposition 3.4. Every fuzzy ideal \mathscr{A} of X satisfies the following inequality:

$$(\forall x, y, z \in X)(\mathscr{A}(x-z) \ge \min\{\mathscr{A}((x-y)-z), \mathscr{A}(y)\}). \tag{3.3}$$

Proof. Using (c2) and (S3), we have

$$\mathscr{A}(x-z) \ge \min\{\mathscr{A}((x-z)-y),\mathscr{A}(y)\}\$$

= $\min\{\mathscr{A}((x-y)-z),\mathscr{A}(y)\}$

for all
$$x, y, z \in X$$
.

We give conditions for a fuzzy set to be a fuzzy ideal.

Theorem 3.5. If a fuzzy set \mathscr{A} in X satisfies conditions (c1) and (??), then \mathscr{A} is a fuzzy ideal of X.

Proof. Taking z = 0 in (??) and using (a2), we obtain

for all $x, y \in X$. Hence \mathscr{A} is a fuzzy ideal of X. \square

Corollary 3.6. Let \mathscr{A} be a fuzzy set in X. Then \mathscr{A} is a fuzzy ideal of X if and only if it satisfies conditions (c1) and $(\ref{eq:corollary})$.

The following is a characterization of a fuzzy ideal of X.

Theorem 3.7. Let $\mathscr A$ be a fuzzy set in X. Then $\mathscr A$ is a fuzzy ideal of X if and only if it satisfies the following conditions:

$$(\forall x, y \in X)(\mathscr{A}(x-y) \ge \mathscr{A}(x)), \tag{3.4}$$

$$(\forall x, a, b \in X)(\mathscr{A}(x - ((x - a) - b)) \ge \min\{\mathscr{A}(a), \mathscr{A}(b)\}). \tag{3.5}$$

Proof. Assume that \mathscr{A} is a fuzzy ideal of X. Using (a3), (c1) and (c2), we get

$$\mathscr{A}(x-y) \geq \min\{\mathscr{A}((x-y)-x),\mathscr{A}(x)\}\$$

= $\min\{\mathscr{A}(0),\mathscr{A}(x)\} = \mathscr{A}(x)$

for all $x, y \in X$. Since

$$(x - ((x - a) - b)) - a = (x - a) - ((x - a) - b) < b.$$

it follows from (??) that $\mathscr{A}((x-((x-a)-b))-a) \ge \mathscr{A}(b)$ so from (c2) that

$$\mathcal{A}(x - ((x - a) - b))$$

$$\geq \min\{\mathcal{A}((x - ((x - a) - b)) - a), \mathcal{A}(a)\}$$

$$\geq \min\{\mathcal{A}(a), \mathcal{A}(b)\}.$$

Conversely let $\mathscr A$ be a fuzzy set in X satisfying conditions (??) and (??). Taking y=x in (??). Then $\mathscr A(0)=\mathscr A(x-x)\geq \mathscr A(x)$ for all $x\in X$. Using (??), we obtain

$$\mathcal{A}(x) = \mathcal{A}(x-0)$$

$$= \mathcal{A}(x - ((x-y) - (x-y)))$$

$$= \mathcal{A}(x - ((x - (x-y)) - y))$$

$$\geq \min{\{\mathcal{A}(x-y), \mathcal{A}(y)\}}$$

for all $x, y \in X$. Hence \mathscr{A} is a fuzzy ideal of X. \square

Proposition 3.8. Every fuzzy ideal \mathscr{A} of X satisfies the following assertion:

$$(\forall x, y \in X)(\exists x \lor y \implies \mathscr{A}(x \lor y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y)\}). \tag{3.6}$$

Proof. Suppose there exists $x \vee y$ for $x, y \in X$. Let w be an upper bound of x and y. Then $x \vee y = w - ((w - y) - x)$ is the least upper bound for x and y (see [?]), and so $\mathscr{A}(x \vee y) = \mathscr{A}(w - ((w - y) - x)) \geq \min\{\mathscr{A}(x), \mathscr{A}(y)\}$ by (??). This completes the proof.

Let $\mathscr A$ be a fuzzy set in X . For any $w\in X$, we consider the set

$$\uparrow \mathscr{A}(w) := \{ x \in X \mid \mathscr{A}(x) > \mathscr{A}(w) \}.$$

Obviously, $w \in \uparrow \mathscr{A}(w)$. If \mathscr{A} is a fuzzy ideal of X, then $0 \in \uparrow \mathscr{A}(w)$ by (c1). The following is our question: For a fuzzy set \mathscr{A} in X satisfying (c1), is $\uparrow \mathscr{A}(w)$ an ideal of X? But the following example provides a negative answer, that is, there exists an element $w \in X$ such that $\uparrow \mathscr{A}(w)$ is not an ideal of X.

Example 3.9. Consider a subtraction algebra $X = \{0, a, b, c\}$ with the following Cayley table:

Let \mathscr{A} be a fuzzy set in X defined by $\mathscr{A}(0)=0.8$, $\mathscr{A}(a)=0.5$, $\mathscr{A}(b)=0.7$, and $\mathscr{A}(c)=0.3$. Note that \mathscr{A} is not a fuzzy ideal of X since $\mathscr{A}(c)<\min\{\mathscr{A}(c-b),\mathscr{A}(b)\}$. Then $\uparrow\mathscr{A}(a)=\{0,a,b\}$ is not an ideal of X since $c-b=a\in\uparrow\mathscr{A}(a)$ and $b\in\uparrow\mathscr{A}(a)$, but $c\notin\uparrow\mathscr{A}(a)$. Note that $\uparrow\mathscr{A}(b)=\{0,b\}$ is an ideal of X.

We give conditions for the set $\uparrow \mathscr{A}(w)$ to be an ideal.

Theorem 3.10. Let $w \in X$. If \mathscr{A} is a fuzzy ideal of X, then $\uparrow \mathscr{A}(w)$ is an ideal of X.

Proof. Recall that $0 \in \uparrow \mathscr{A}(w)$. Let $x,y \in X$ be such that $x-y \in \uparrow \mathscr{A}(w)$ and $y \in \uparrow \mathscr{A}(w)$. Then $\mathscr{A}(w) \leq \mathscr{A}(x-y)$ and $\mathscr{A}(w) \leq \mathscr{A}(y)$. Since \mathscr{A} is a fuzzy ideal of X, it follows from (c2) that

$$\mathscr{A}(x) \ge \min{\{\mathscr{A}(x-y), \mathscr{A}(y)\}} \ge \mathscr{A}(w)$$

so that $x \in \uparrow \mathscr{A}(w)$. Therefore $\uparrow \mathscr{A}(w)$ is an ideal of X. \square

Theorem 3.11. Let $\mathscr A$ be a fuzzy set in X and $w \in X$. Then

1. If $\uparrow \mathscr{A}(w)$ is an ideal of X, then \mathscr{A} satisfies the following implication for all $x, y, z \in X$,

$$(\mathscr{A}(x) \le \min\{\mathscr{A}(y-z)\mathscr{A}(z)\} \Rightarrow \mathscr{A}(x) \le \mathscr{A}(y)). \tag{3.7}$$

2. If \mathscr{A} satisfies (c1) and (??), then $\uparrow \mathscr{A}(w)$ is an ideal of X.

Proof. (1) Assume that $\uparrow \mathscr{A}(w)$ is an ideal of X for each $w \in X$. Let $x, y, z \in X$ be such that $\mathscr{A}(x) \leq \min\{\mathscr{A}(y-z), \mathscr{A}(z)\}$. Then $y-z \in \uparrow \mathscr{A}(x)$ and $z \in \uparrow \mathscr{A}(x)$. It follows from (b4) that $y \in \uparrow \mathscr{A}(x)$, that is, $\mathscr{A}(x) \leq \mathscr{A}(y)$.

(2) Suppose that $\mathscr A$ satisfies (c1) and (??). For each $w \in X$, let $x,y \in X$ be such that $x-y \in \uparrow \mathscr A(w)$ and $y \in \uparrow \mathscr A(w)$. Then $\mathscr A(x-y) \geq \mathscr A(w)$ and $\mathscr A(y) \geq \mathscr A(w)$, which imply that $\mathscr A(w) \leq \min\{\mathscr A(x-y), \mathscr A(y)\}$. Using (??), we have $\mathscr A(w) \leq \mathscr A(x)$ and so $x \in \uparrow \mathscr A(w)$. Since $\mathscr A$ satisfies (c1), it follows that $0 \in \uparrow \mathscr A(w)$. Therefore $\uparrow \mathscr A(w)$ is an ideal of X.

For any $\alpha \in [0,1]$, we know $U(\mathscr{A};\alpha) = \{x \in X | \mathscr{A}(x) \geq \alpha\}([?])$.

Theorem 3.12. Let $\mathscr A$ be a fuzzy set in X. Then $\mathscr A$ is a fuzzy ideal of X if and only if it satisfies:

$$(\forall \alpha \in [0,1]) (U(\mathscr{A}; \alpha) \neq \emptyset \Rightarrow U(\mathscr{A}; \alpha) \triangleleft X).$$

Proof. It follows from the Transfer Principle (see [?, Theorem 2.1]).

The ideals $U(\mathscr{A};\alpha),\ \alpha\in[0,1],$ in Theorem ?? are called *level ideals* of $\mathscr{A}.$

Theorem 3.13. Any ideal of X can be realized as a level ideal of some fuzzy ideal of X.

Proof. Let A be an ideal of X and let \mathscr{A} be a fuzzy set in X defined by

$$\mathscr{A}(x) =: \begin{cases} \alpha & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$
 (3.8)

where α is a fixed number in (0,1). Then

$$U(\mathscr{A};\beta) = \begin{cases} X & \text{if } \beta = 0, \\ A & \text{if } 0 < \beta \le \alpha, \\ \emptyset & \text{if } \alpha < \beta \le 1, \end{cases}$$
(3.9)

and so $U(\mathscr{A};\beta) \triangleleft X$ whenever $U(\mathscr{A};\beta) \neq \emptyset$ for all $\beta \in [0,1]$. It follows from Theorem ?? that \mathscr{A} is a fuzzy ideal of X and clearly $U(\mathcal{A}; \alpha) = A$.

Proposition 3.14. Let \mathscr{A}' be a fuzzy set in X. Then \mathscr{A}' is a fuzzy ideal of X if and only if it satisfies:

$$(\forall x, y, z \in X) (x - y \le z \Rightarrow \mathscr{A}(x) \ge \min\{\mathscr{A}(y), \mathscr{A}(z)\})$$
(3.10)

Proof. Assume that \mathscr{A} is a fuzzy ideal of X and let $x, y, z \in X$ be such that $x - y \leq z$. Then $\mathscr{A}(z) \leq$ $\mathscr{A}(x-y)$ by Proposition ??. It follows from (c2) that $\mathscr{A}(x) \ge \min\{\mathscr{A}(x-y), \mathscr{A}(y)\} \ge \min\{\mathscr{A}(y), \mathscr{A}(z)\}.$ Conversely, suppose that \mathscr{A} satisfies (??). Since $0-y \leq y$ for all $y \in X$, we have

$$\mathscr{A}(0) \ge \min\{\mathscr{A}(y), \mathscr{A}(y)\}$$

by (??). Thus (c1) is valid. Since $x - (x - y) \le y$ for all $x, y \in X$ by (a4), it follows from (??) that $\mathscr{A}(x) \geq$ $\min\{\mathscr{A}(x-y),\mathscr{A}(y)\}\$. Hence \mathscr{A} is a fuzzy ideal of X.

As a generalization of Proposition ??, we have the following results.

Theorem 3.15. If a fuzzy set \mathscr{A} in X is a fuzzy ideal of X,

$$\prod_{i=1}^{n} x - w_i = 0 \Rightarrow \mathscr{A}(x) \ge \min\{\mathscr{A}(w_i) \mid i = 1, 2, \dots, n\}$$
(3.11)

for all $x, w_1, w_2, \cdots, w_n \in X$, where

$$\prod_{i=1}^{n} x - w_i = (\cdots((x - w_1) - w_2) - \cdots) - w_n.$$

Proof. The proof is by induction on n. Let \mathscr{A} be a fuzzy ideal of X. Propositions ?? and ?? show that the condition (??) is valid for n = 1, 2. Assume that \mathscr{A} satisfies the condition (??) for n = k, that is,

$$\prod_{i=1}^{k} x - w_i = 0 \Rightarrow \mathscr{A}(x) \ge \min\{\mathscr{A}(w_i) \mid i = 1, 2, \cdots, k\}$$

for all $x, w_1, w_2, \cdots, w_k \in X$. Let $x, w_1, w_2, \dots, w_k, w_{k+1} \in X$ be such that $\prod_{i=1}^{k+1} x - w_i$ $w_i = 0$. Then

$$\mathscr{A}(x-w_1) \ge \min\{\mathscr{A}(w_j) \mid j=2,3,\cdots,k+1\}.$$

Since \mathscr{A} is a fuzzy ideal of X, it follows from (c2) that

$$\begin{aligned} \mathscr{A}(x) &\geq \min\{\mathscr{A}(x-w_1),\,\mathscr{A}(w_1)\}\\ &\geq \min\{\mathscr{A}(w_1),\,\min\{\mathscr{A}(w_j)\mid j=2,3,\cdots,k+1\}\}\\ &= \min\{\mathscr{A}(w_i)\mid i=1,2,\cdots,k+1\}. \end{aligned}$$

This completes the proof.

Now we consider the converse of Theorem ??.

Theorem 3.16. Let \mathscr{A} be a fuzzy set in X satisfying the condition (??). Then \mathscr{A} is a fuzzy ideal of X.

Proof. Note that
$$\left(\cdots((0-\underline{x})-x)-\cdots\right)-x=0$$
 for all $x\in X$. It follows from (??) that $\mathscr{A}(0)\geq \mathscr{A}(x)$ for all

 $x \in X$. Let $x, y, z \in X$ be such that x - y < z. Then

$$0 = (x - y) - z = (\cdots(((x - y) - z) - \underbrace{0) - \cdots) - 0}_{n - 2 \text{ times}},$$

and so $\mathscr{A}(x) \geq \min\{\mathscr{A}(y), \mathscr{A}(z), \mathscr{A}(0)\}$ $\min\{\mathscr{A}(y),\mathscr{A}(z)\}$. Hence, by Proposition ??, we conclude that \mathcal{A} is a fuzzy ideal of X.

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1986.
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Collog. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence.
- [3] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 24 (2007), no. 1, 129–134, bf:e2006, 1081-1086.
- [4] Y. B. Jun, H. S. Kim and E. H. Roh, *Ideal theory of* subtraction algebras, Sci. Math. Jpn. 61(2005), no. 3, 459-464, :e-2004, 397-402.
- [5] Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algerbas, Sci. Math. Jpn. 59 (2004), no. 1, 35-40, :e9, 95-100.
- [6] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.

[7] B. Zelinka, *Subtraction Semigroups*, Math. Bohemica, **120** (1995), 445–447.

Professor of Chinju National University of Education Research Area: Fuzzy mathematics, Fuzzy algebras, BCKalgebras

E-mail: ehroh@cue.ac.kr

Young Hee Kim

Professor of Chungbuk National University Research Area: Fuzzy mathematics, Fuzzy algebras, BCKalgebras, Subtraction algebras E-mail: yhkim@chungbuk.ac.kr

Eun Hawan Roh

Kyong Ah Oh

She is doctor course in the department of mathematics of Chungbuk National University

Research Area: Fuzzy mathematics, Fuzzy algebras, BCK-algebras, Subtraction algebras

E-mail: kyongahoh@hanmail.net