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Nonlinear Focusing Wave Group on Current

흐름의 영향을 받는 파랑 그룹의 비선형 집중

Julien Touboul*, Efim Pelinovsky** and Christian Kharif*

쥬리언 투보울*·에핌 페리높스키**·크리스티안 카리프* 

Abstract : Formation of freak waves is studied in deep water from transient wave packets propagating on

current. Those waves are obtained by means of dispersive focusing. This process is investigated by solving both

linear and nonlinear equations. The role of nonlinearity is emphasized in this interaction. 

Keywords : dispersive focusing, wave-current interaction, kinematic model, nonlinear equations.

요 지 :심해에서 생성된 최극해파가 파랑과 상호작용하는 현상에 대한 연구를 수행하였다. 이러한 파랑은 분

산집중을 이용하여 산정하였다. 이러한 과정은 선형 및 비선형 방정식의 해를 구하여 얻을 수 있다. 상호작용에

서 비선형성의 역할을 강조하였다. 

핵심용어 :분산집중, 파랑-흐름 상호작용, 운동학적 모형, 비선형방정식

1. Introduction

Freak, rogue or giant waves are extreme events. They are

characterized by their unpredictability, which explains that

they are known as ”waves from nowhere”. As a matter of

fact, they are responsible for an important number of large

damages, caused to ships or offshore rigs. Over the last

twenty years, a large number of events has been reported,

and a lot of ship disappearances have been correlated to

rogue waves events. Up to now there is no definite consen-

sus about a unique definition of freak wave. The most pop-

ular definition is the amplitude criterion: the height of a

freak wave should exceed twice the significant height of

the background wave field. Several mechanisms have been

suggested to explain the formation of freak waves, such as

spatio-temporal focusing (Kharif et al., 2001; Johannessen

and Swan, 2003; Gibson and  Swan), nonlinear or modula-

tional instability (Benjamin-Feir instability) (Benjamin and

Feir, 1967; Dyachenko and Zakharov, 2005), envelope soli-

ton and breather interactions (Clamond and Grue, 2002).

Those mechanisms have been reviewed by Kharif and Peli-

novsky in (2003) and by Dysthe in (2001). 

Wave-current interaction contributes also in the freak

wave formation and historically, this mechanism was the rst

to explain the origin of freak waves (Peregrine, 1976; Smith,

1976). In fact, the vertical shear of the oceanic current is

important for short wind waves with length shorter than a

few meters (Craik, 1985; Thomas, 1981; Thomas, 1990;

Silva and Peregrine, 1988; Shrira and Sazonov, 2001), but

can be ignored for typical gravity waves. The horizontal

variability of the oceanic current is relatively high (for instance

in the vicinity of the Agulhas current off South Africa) and

leads to the strong spatial (geometrical) focusing of the

swell (Lavrenov, 1998; White and Fornberg, 1998). Mean-

while the current (even uniform) can influence the temporal

focusing of wind waves. Recently Wu and Yao (2004) stud-

ied the last problem experimentally. They observed a shift

of the focusing point, and by analyzing the shape of limit-

ing freak waves, and their spectral evolution, they con-

cluded that the nonlinearity of freak waves is affected by
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the presence of current. Indeed, the role of nonlinearity on

uniform wave trains propagating on currents has been

investigated numerically in by Ryu et al. (2003).

This work presents a series of numerical simulations of a

focusing wave train propagated with and without current in

infinite depth. The current is assumed to be constant in

space. The wave packet with linear frequency modulation

is generated at a fixed point. Herein we emphasize the

problem we are dealing with is a boundary value problem

(BVP) and not an initial value problem (IVP). In this partic-

ular case, the Galileo transformation is not used directly.

Firstly (section 2), we demonstrate the shifting of focal

points in the framework of kinematic approach. Then, the

fully nonlinear numerical method is briey introduced (sec-

tion 3). Numerical results of freak wave formation on the

current obtained in the framework of the fully nonlinear

model are presented and compared to results given by lin-

ear theory, including the kinematic model. A special interest is

taken to analyze the evolution of the spectral components

present in the focusing wave group. 

2. The Kinematic Model

Due to the dispersive behaviour of water waves, when

short waves propagate in front of longer waves, they will be

overtaken, and large amplitude wave can occur at a fixed

point. A linear approach of the problem would lead to con-

sider sea surface as a superposition of linear waves of fre-

quencies ω(x, t). Following Whitham (1974) and Brown

(2001), the spatio-temporal evolution of these components

is governed by the following hyperbolic equation

(1)

 

where cg is the group velocity. The boundary value prob-

lem for this equation can be solved by using the method

of characteristics. Its solution is 

(2)

where ω0 corresponds to the temporal frequency distribu-

tion of the wave train at x = 0. By differentiating the fre-

quency, it comes 

(3)

and one can notice that the case dω0/dτ < 0, which corre-

sponds to the case of short waves emitted before longer waves,

leads to a singularity. This singularity corresponds to the

focusing of several waves at t = Tf and x = Xf. For infinite

depth, the group velocity of each components is given by

cg(ω) = g/2ω . As a matter of fact, the frequency to

impose to a wave maker located at x = 0, and for 0 < t <

T is given by

(4)

where g is the acceleration due to gravity. This frequency

modulation, varying linearly from ωmin to ωmax, provides

the optimal focusing of the linear wave packets in still

water and is very often applied in the laboratory condi-

tions. Components following this law will all merge at

the same place Xf, and the same time Tf, coordinates of

the focusing point in the (x - t) plane, given by 

(5)

In presence of current, equation (1) should be modified,

to take care of the Doppler effect. It rewrites 

(6)

where U is the current velocity. The solution, previously

given by (2), becomes 

(7)

By differentiating the frequency, it comes 

(8)

One can notice that the dynamics of the wave group is

more complicated. The denominator is now a function of

time, and is equal to zero for several values of space and

time. The waves do not merge at the same place, at the

same time. The focusing point is theoretically spread to a

focusing area, extending from Lmin to Lmax, where 

(9)
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The kinematic model presented above has some limita-

tions. It demonstrates the shifting of the focusing point,

but cannot predict wave amplitudes which are formally

infinite at this point. To avoid this problem, a fully linear

approach is used based on the Fourier integral. It is based

on the linear dispersion relation in infinite depth, in pres-

ence of current, that reads 

(10)

where k(ω) is the wave number. This equation is solved

iteratively, by means of Newton’s method. Solutions

preserving the sign of (kx – ωt) are considered. By

introducing this dispersion relation into linear equa-

tions, it comes

(11)

that can be solved at any place and any time by knowing

η(0, t). 

3. Mathematical Formulation of the Fully Nonlinear 

Problem

The problem is solved numerically by assuming valid the

potential theory. Hence, φ, the velocity potential, satises the

Laplace’s equation ∆φ = 0. By introducing the decomposi-

tion

(12)

where Ux is the potential due to the presence of current,

and ϕ  can be understood as a perturbed potential, one

can notice that ϕ is also solution of the Laplace’s equa-

tion ∆ϕ = 0. Classical free surface conditions, respec-

tively kinematic and dynamic, reads 

(13)

The solution of the Laplace’s equation for j, with the

above boundary conditions can be obtained by using Green’s

second identity. A mixed Euler-Lagrange description of

the problem is adopted, meaning that a particular description

of the surface is used. More details can be found in

Brown (2006). This method has been checked by compari-

son with numerical simulations by Zhu and Zhang (1997), and

a good agreement has been found.

4. Results and Discussion

Numerical simulations presented here show the interac-

tion of the focusing wave packet and current. The focusing

wave group has a frequency varying from 1.3 to 0.7 Hz. It

is propagated numerically with, and without a current vary-

ing from U/cg = -0.25 to U/cg = + 0.25. If the mean steepness,

during simulations, is of order ε ~ 0.1, it can locally reach

0.35 for large wave events corresponding to an important

nonlinearity. 

Figure 1 presents the free surface obtained at each focus-

ing point by solving the nonlinear equations, without cur-

rent, and with current velocities of U/cg = - 0.125 and U/cg

= + 0.125. Here cg is the mean group velocity of the frequency

modulated wave group. The focusing point is defined as the

location where maximum elevation is reached. Differences

appear between those profiles. The group propagated with

a co-current focuses further (and later) than the one propa-

gated freely, while its elevation is lower. On the other hand,

the group propagated in a counter-current focuses closer

(and faster), and its amplitude is larger than the amplitude

of the group propagated freely. Variation of freak wave

amplitude is of order 10%. The evolution of the focusing
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Fig. 1. Free surface elevation at each focusing time for a group

propagated freely (solid line) with counter-current of

velocity U/cg = -0.125 (dashed line), and with co-cur-

rent of velocity U/cg = +0.125 (dotted line).
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point corresponds to linear prediction. Indeed, one can notice

from equation (9) that linear theory predicts an area spread-

ing closer than Xf for counter-stream, and further for co-

stream. On the other hand, results concerning wave ampli-

tudes are surprising. Actually, linear theory predicts a spread-

ing of the focusing area in both counter and co-stream,

which should result in a decay of the wave amplitude in

both cases. Quantitative comparisons can be obtained with

linear approach presented above. 

Figure 2 presents the location of the focusing point

obtained from both linear and nonlinear methods, plotted as

a function of current velocity. Theoretical values obtained

from the kinematic model also appear. One can notice a

very good agreement between linear and nonlinear meth-

ods. Focusing appears in an area spreading from Lmax to

Lmin, as predicted by the kinematic model. Very weak dif-

ferences can be observed between linear and nonlinear

methods, especially in strong countercurrents, where the

waves become steeper. This shows that from a kinematic

point of view, the linear representation of the problem is a

relevant approach. 

Figure 3 shows the maximum elevation reached at the

focusing point as a function of the current velocity, for both

linear and nonlinear models. Differences are more impor-

tant here. For the linear model, the maximum is reached

without any current. This can be understood by considering

that the focal point turns into a focusing area in both cases

of counter and co-current. The energy is spread, and the

resulting wave is lower. The influence of current, through

Doppler effect, leads to non-optimal focusing, as it was

shown in the framework of the kinematic model. Disper-

sion parameter, d 2k/dω2 increases for counter-current more

than for co-current, which results in a decay of the focal

amplitude for counter-current. For the nonlinear case, the

observation is different. If the behavior in co-currents is

very similar to the behavior presented by the kinematic

model, the evolution in counter-currents is different. These

differences have a pronounced maximum in a counter-cur-

rent of U/cg = - 0.125. The amplification of the wave ampli-

tude on counter-current is due to two effects. Firstly, wave

dispersion (deviation from optimal focusing) is decreased

in counter-currents when nonlinearity is taken into account,

as it is emphasized later. This mechanism tends to keep

coherence of components, and maintain focusing on counter-

currents. Secondly, the role of the modulational (Benjamin-

Feir) instability increases while the wave steepness is

enlarged in counter-currents. Thus, the nonlinear parameter

ak is increased, and the growth rate of modulational insta-

bility is also increased. This mechanism also tends to increase

wave amplitude on focusing point. Development of this

mdoulational instability in frequency modulated wave groups

propagated has been observed in by Brown and Jensen

(2001). One can notice that this phenomenon should disap-

pear for two dimensional waves propagating in finite depth,

Fig. 2. Numerical focusing point as a function of the current

velocity, for both linear (circles) and nonlinear models

(triangles), plotted together with the theoretical extreme

values of the focusing area Lmin and Lmax from the kine-

matic model.

Fig. 3. Amplitude at the focal point as a function of the current

velocity, for both linear (circles) and nonlinear models

(triangles).
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since modulational instability is not relevant in this case. 

The time frequency representation of the focused wave

group, obtained by means of wavelet analysis, is presented

on Figure 4 for freak waves obtained on several current

velocities U/cg. A perfect focusing should be represented as

a vertical straight line. Results obtained with the linear

model are plotted together with results of the fully nonlin-

ear simulations. As expected, the agreement is excellent for

a freak wave obtained on a co-stream (c). It emphasizes the

linear behavior of the waves during the focusing process in

a co-stream. It can be understood by the low steepness of

waves involved in the process. In both linear and nonlinear

simulations, the focusing obtained is not perfect, illustrat-

ing the spread area of focusing. Weak differences appear

for the case without current. Those differences concern high

frequencies, corresponding to the most nonlinear waves.

Components are almost perfectly focused in the (t - f )

plane, explaining the high amplitude reached for that cur-

rent velocity. As mentioned earlier, the differences between

nonlinear and linear simulations are larger in the case of

U/cg = -0.125. Figure 4 confirms that high frequencies propa-

gate faster in the nonlinear simulation, as predicted by first-

order correction of the linear dispersion relation (see

Whitham (1974)). Therefore, high frequencies components

focus on longer distances in this case, than in the linear one.

Nonlinearity seems to balance the linear effect, by acceler-

ating slowest components of the group, and maintaining

focusing on larger locations. This explains partially the dif-

ferences observed in amplitudes between kinematic model

and nonlinear one. 

5. Conclusion 

The interaction between a focusing wave group and cur-

rent is studied numerically. Two methods are used. In linear

theory we use an approximated kinematic approach as well

as full linear solution based on the Fourier integral. Another

approach is to solve numerically the nonlinear equations.

The results obtained for both models are compared. The

global kinematic behavior (locations of the focal points) is

found to be similar. In terms of maximum amplitude, some

differences are obtained. In the linear description, maximal

amplitudes of freak waves are obtained without current,

while in the nonlinear case, maximal amplitude of freak

waves occurs in a weak opposing current. The presence of

a maximum of the amplitude curve in linear theory is related

with the shift from optimal conditions of linear focusing. In

nonlinear theory, waves propagated on counter-current suf-

fer a decay of wavelength resulting in an increase of their

steepness. Increasing nonlinearity results in two phenom-

ena. First, the dispersion relation is changed, leading non-

linear waves to propagate faster than the group velocity

predicted by the linear dispersion relation. Secondly, the

modulational instability can develop. These phenomena result

in larger values of the wave amplitude at the focal point.
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