음성과학 (Speech Sciences)
- 제14권2호
- /
- Pages.105-114
- /
- 2007
- /
- 1226-5276(pISSN)
Particle Swarm 기반 최적화 멤버쉽 함수에 의한 잡음 환경에서의 화자인식 성능향상
Performance Enhancement of Speaker Identification in Noisy Environments by Optimization Membership Function Based on Particle Swarm
초록
The performance of speaker identifier is severely degraded in noisy environments. A study suggested the concept of observation membership for enhancing performances of speaker identifier with noisy speech [1]. The method scaled observation probabilities of input speech by observation identification values decided by SNR. In the paper [1], the authors suggested heuristic parameter values for membership function. In this paper we attempt to apply particle swarm optimization (PSO) for obtaining the optimal parameters for speaker identification in noisy environments. With the speaker identification experiments using the ETRI database we prove that the optimization approach can yield better performance than using only the original membership function.