DOI QR코드

DOI QR Code

RMESH에서 선형 사진트리의 블록 위치 계산을 위한 상수시간 알고리즘

Constant Time Algorithm for Computing Block Location of Linear Quadtree on RMESH

  • 한선미 (단국대학교 대학원 컴퓨터과학) ;
  • 우진운 (단국대학교 정보컴퓨터학부)
  • 발행 : 2007.06.30

초록

계층적 자료구조인 사진트리는 영상을 표현하는데 매우 중요한 자료구조이다. 사진트리를 메모리에 저장하는 방법 중 선형 사진트리 표현 방법은 다른 표현 방법과 비교할 때 저장 공간을 매우 효율적으로 절약할 수 있는 이점이 있기 때문에 사진트리와 관련된 연산의 수행을 위해 선형 사진트리를 사용하는 효율적인 알고리즘 개발에 많은 연구가 진행되어 왔다. 블록위치 계산은 영상에서부터 주어진 블록을 완전히 포함하는 컴포넌트를 추출하는 연산으로, 영상 처리의 응용에서 중요하게 사용되는 기하학적 연산에 속한다. 본 논문에서는 RMESH(Reconfigurable MESH) 구조에서 3-차원 $n\times n\times n$ 프로세서를 사용하여 선형 사진트리로 표현된 영상의 블록위치를 계산하는 상수시간 알고리즘을 제안한다. 이 알고리즘은 $n\times n\times n$ RMESH의 계층구조에서 선형 사진트리의 위치코드들을 효율적으로 처리하는 기본적인 연산들을 이용함으로써 상수시간의 시간복잡도를 갖는다.

Quadtree, which is a hierarchical data structure, is a very important data structure to represent images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The computation of block location is one of important geometry operations in image processing, which extracts a component completely including a given block. In this paper, we present a constant time algorithm to compute the block location of images represented by quadtrees, using three-dimensional $n\times n\times n$ processors on RMESH(Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to deal with the locational codes of quardtree on the hierarchical structure of $n\times n\times n$ RMESH.

키워드

참고문헌

  1. H. Samet, Application of Spatial Data Structures, Computer Graphics, Image Processing, and GIS. Addison-Wesley, 1990
  2. H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990
  3. I. Gargantini, 'Translation, rotation, and superposition of linear quadtrees,' International of Man-Machine Studies Vol.18, No.3, pp.253-263, 1985 https://doi.org/10.1016/S0020-7373(83)80009-1
  4. T.R. Walsh, 'Efficient axis-trnaslation of binary digital pictures by blocks in linear quadtree representation,' Computer Vision, Graphics and Image Processing Vol.41, No.3, pp.282-292, 1988 https://doi.org/10.1016/0734-189X(88)90103-X
  5. 김 명, 장주욱, '재구성가능 매수에서 O(1)시간 복잡도를 갖는 이진영상/사진트리 변환 알고리즘,' 정보과학회논문지(A), 제23권, 제5호, pp.454-466, 1996
  6. 공헌택, 우진운, 'RMESH 구조에서의서 원형 사진트리 구축을 위한 상수 시간 알고리즘, ' 정보처리 논문지, 제4권, 제9호, pp. 2247-2258, 1997
  7. 김경훈, 우진운, 'RMESH 구조에서 unaligned 선형사진트리의 alignrnent를 위한 상수시간 알고리즘,' 정보과학회논문지, 제31권 1,2호, pp.10-18, 2004
  8. G. Kim, et. al, 'Finding Neighbor Blocks on 3D RMESH in Constant Time without Condition,' Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, pp.2225-2231, 2001
  9. J. Jenq, 'Clustering Using Self Organization Map on Rmesh,' Proceedings of International Conference on Computers and Their Applications, pp.91-96, 2005
  10. R. Miller, V. Prasanna-Kurnar, D. Reisis, and Q. Stout, 'Parallel Computation on Reconfigurable Meshes,' IEEE Transactions on Computers, Vol.42, No.6, pp.678-692, 1993 https://doi.org/10.1109/12.277290
  11. J. Jenq and S. Sahni, 'Reconfigurable Mesh Algorithms for The Hough Transform,' Proceedings of International Conference on Parallel Processing, Vol.Ⅲ, pp.34-41, 1991 https://doi.org/10.1006/jpdc.1994.1006
  12. 김수환,'구멍이 있는 다각형에서 가시성 다각형을 구하는 상수 시간 RMESH 알고리즘,'정보과학 2000년 가을학술발표논문집, 2000
  13. 김홍근, 조유근, '단순다각형의 내부점 가시도를 위한 효율적인 RMESH 알고리즘,정보학회 논문지, 제20권 11호, pp.1693-1701, 1993
  14. J. Jang, H. Park, and V. Prasanna, 'A Fast Algorithm for Computing Histogram on a Reconfigurable Mesh,' IEEE Trans. on Pattern Analysis and Machine Intelligence , Vol. 17, No.2, pp.97-106, 1995 https://doi.org/10.1109/34.368177
  15. Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, 'The Power of Reconfiguration,' Journal of Parallel and Distributed Computing, 13, pp.139-153, 1991 https://doi.org/10.1016/0743-7315(91)90084-M
  16. J. Jang and V. Prasanna, 'An Optimal Sorting Algorithm on Reconfigurable Meshes,' Proceedings 6th International Parallel Processing Symposium, 1992 https://doi.org/10.1109/IPPS.1992.223059
  17. M. Nigam and S. Sahni, 'Sorting n Numbers On n x n Reconfigurable Meshes With Buses,' Proceedings 7th International Parallel Processing Symposium, pp.174- 181, 1993 https://doi.org/10.1109/IPPS.1993.262877
  18. Sanjay Ranka and Sartaj Sahni, Hypercube algorithms with applications to image processing and pattern recognition, Springer-Verlag, New York, 1990