DOI QR코드

DOI QR Code

Pile and Ground Responses during Driving of a Long PHC Pile in Deep Soft Clay

대심도 연약지반에서 장대 PHC말뚝의 항타에 따른 지반과 말뚝거동

  • 김성렬 (동아대학교 토목공학과) ;
  • ;
  • 정성교 (동아대학교 토목공학과)
  • Published : 2007.05.31

Abstract

Because pile behavior is governed by geotechnical characteristics of surrounding soils, it is therefore necessary to monitor ground responses during pile driving and analyze the relation between the behaviors of pile and ground. In this research, the 57 m long PHC pile was driven into deep soft clay in the Nakdong River estuary area. During and after the pile driving, the ground responses and the residual load of pile have been monitored for about a year, by using piezometers, inclinometers, level posts for surface settlement, and strain gauges in piles etc. As the results, the residual load by the negative skin friction along the pile increased with the dissipation of the excess pore pressure, which was developed by pile driving and reclamation. About 30% of the maximum residual load developed due to the dissipation of the increased excess pore pressure during the driving. It is thus emphasized that most piles driven in clay deposits need to be designed by considering negative skin friction along the pile.

말뚝 기초의 거동은 말뚝을 둘러싼 주변 지반의 특성에 좌우되므로, 항타 중의 지반거동을 계측하고 지반과 말뚝 거동간의 상관관계를 분석하는 연구가 필요하다. 본 연구에서는 말뚝 인접지반에 간극수압계, 경사계, 지표 변위말뚝, 그리고 말뚝 변형률계 등을 매설하여 낙동강 하구지역에 위치한 대심도 연약지반에 약 57m 관입깊이의 PHC 장대 말뚝을 항타하였을 때 말뚝 축하중 분포와 인접지반의 거동을 약 1년간 계측하고 그 결과를 분석하였다. 계측결과 매립하중과 항타에 의해 발생한 점토층 내의 과잉간극수압이 소산되면서 말뚝체 내에 부마찰력이 점차 증가하는 것으로 나타났다. 부마찰력에 의해 발생한 말뚝체의 최대 압축력 중 약 30%는 항타 중 증가한 과잉간극수압의 영향 때문으로 나타났다. 그러므로, 점성토 지반에 설치되는 대부분의 말뚝에 대하여 부마찰력을 고려한 설계를 수행할 필요성이 강조되었다.

Keywords

References

  1. 김성렬, 정성교, N.T.Dung (2006), 'PHC 말뚝의 하중전이실험을 통한 참 지지력의 산정', 한국지반공학회 논문집, Vol.22, No.11 pp.113-122
  2. 일본 토질공학회 (1997), 말뚝기초의 설계법과 해설
  3. 한국 지반공학회 (2003), 구조물 기초 설계기준
  4. Bond, A.J., and Jardine, R.J. (1991), 'Effects of installing displacement piles in a high OCR clay', Geotechnique, Vol.41, No.3, pp.341-363 https://doi.org/10.1680/geot.1991.41.3.341
  5. Briaud, J.L. and Tucker, L.T. (1984), 'Piles in sand: a method including residual stresses', Journal of Geotechnical Engineering, Vol.110, No.11, pp.1666-1680 https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1666)
  6. Bullock, P.J., Schmertmann, J.H., McVay M.C., and Townsend, F.C. (2005), 'Side shear setup. I: Test piles driven in Florida', Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.1-12
  7. Chung, S. G., Kim, S. K., Kang, Y. J., Im, J. C. and Prasad, K. N. (2006), 'Failure of a breakwater founded on a thick normally consolidated clay', Geotechnique, Vol.56 No.6, pp.393-409 https://doi.org/10.1680/geot.2006.56.6.393
  8. Cooke, R.W., and Price, G. (1973), 'Strains and displacements around friction piles', Proceedings of 8th International Conference on Soil Mechanics Foundation Engineering, Moscow, Vol.III.9, pp.53-60
  9. Hanna, T.H. and Tan, R.H.S. (1973), 'The behavior of long piles under compressive loads in sand', Canadian Geotechnical Journal, Vol.10, No.3, pp.311-340 https://doi.org/10.1139/t73-030
  10. Holloway, M., Clough, G.W., and Vesic, A.S. (1978), 'A rational procedure for evaluating the behavior of impact-driven piles', ASTM Symposium on Behavior of Deep Foundations, ed. R. Lundgren, Special Technical Publication STP 670, pp.335-357
  11. Hwang, J.H., Liang, N., and Chen, C.H. (2001), 'Ground response during pile driving', Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.11, pp.939-949 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(939)
  12. Fellenius B.H. (2002), 'Determining the resistance distribution in piles, Part 1: Notes on shift of no-load reading and residual load', Geotechnical news magazine, Vol.20, No.2, pp.35-38
  13. Fellenius, B.H. (1991), Pile foundations. Chapter 13 in Foundation Engineering Handbook, edited by H.Y. Fang, Chapman and Hall
  14. Pestana J.M., Hunt, C.E., and Bray, J.D. (2002), 'Soil deformation and excess pore pressure field around a closed-ended pile', Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.1-12 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(1)
  15. Randolph, M.F., Steenfelt, J.S., and Wroth, C.P. (1979), 'The effect of pile type on design parameters for driven piles', Proceddings of 7th European Conference on Soil Mechanics and Foundations in Engineering, Brighton, Vol.II, pp.1156-1182
  16. Roy, M., Blanchet, R., Tavenas, F., and La Rochelle, P. (1981), 'Behaviour of a sensitive clay during pile driving', Canadian Geotechnical Journal, Vol.18, No.2, pp.67-85 https://doi.org/10.1139/t81-007