Increase of $CoQ_{10}$ Production Level by the Coexpression of Decaprenyl Diphosphate Synthase and 1-Deoxy-D-xylulose 5-Phosphate Synthase Isolated from Rhizobium radiobacter ATCC 4718 in Recombinant Escherichia coli

  • Seo, Myung-Ji (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Im, Eun-Mi (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Nam, Jung-Yeon (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Kim, Soon-Ok (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
  • Published : 2007.06.30

Abstract

Two genes, dps encoding decaprenyl diphosphate synthase and dxs encoding 1-deoxy-D-xylulose 5-phosphate synthase, were isolated from Rhizobium radiobacter ATCC 4718. DNA sequencing analysis of the dps and dxs genes revealed an open reading frame of 1,077 bp and 1,920 bp, respectively. The heterologous expression in Escherichia coli BL21(DE3) was carried out in order to identify their functions. Recombinant E. coli BL21(DE3) harboring the dps gene produced $CoQ_{10}$ as well as $CoQ_8$ and $CoQ_9$, whereas E. coli harboring only the dxs gene produced more $CoQ_8$ compared with the wild-type E. coli. Additionally, the coexpression of dps and dxs genes in E. coli was carried out. The recombinant E. coli harboring only the dps gene produced $0.21{\pm}0.04\;mg/l$ of $CoQ_{10}$, whereas the coexpressed E. coli with dps and dxs genes produced $0.37{\pm}0.07\;mg/l$ of $CoQ_{10}$. HPLC analysis also showed that the $CoQ_{10}$ fraction (100% of the total CoQs distribution) was increased from $15.86{\pm}0.66%$ (only dps) to $29.78{\pm}1.80%$ (dps and dxs).

Keywords

References

  1. Choi, J. H., Y. W. Ryu, and J. H. Seo. 2005. Biotechnological production and applications of coenzyme $Q_{10}$. Appl. Microbiol. Biotechnol. 68: 9-15 https://doi.org/10.1007/s00253-005-1946-x
  2. Disch, A. and M. Rohmer. 1998. On the absence of the glyceraldehydes 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol. Lett. 168: 201-208 https://doi.org/10.1111/j.1574-6968.1998.tb13274.x
  3. Kawamukai, M. 2002. Biosynthesis, bioproduction, and novel roles of ubiquinone. J. Biosci. Bioeng. 94: 511-517 https://doi.org/10.1016/S1389-1723(02)80188-8
  4. Kim, S. J., M. D. Kim, J. H. Choi, S. Y. Kim, Y. W. Ryu, and J. H. Seo. 2006. Amplification of 1-deoxy-D-xylulose 5-phosphate (DXP) synthase level increases coenzyme $Q_{10}$ production in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 72: 982-985 https://doi.org/10.1007/s00253-006-0359-9
  5. Kim, S. W. and J. D. Keasling. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72: 408-415 https://doi.org/10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
  6. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  7. Lee, J. K., G. Her, S. Y. Kim, and J. H. Seo. 2004. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Prog. 20: 51-56 https://doi.org/10.1021/bp034213e
  8. Meganathan, R. 2001. Ubiquinone biosynthesis in microorganisms. FEMS. Microbiol. Lett. 203: 131-139 https://doi.org/10.1111/j.1574-6968.2001.tb10831.x
  9. Melzer, M. and L. Heide. 1994. Characterization of polyprenyl diphosphate: 4-Hydroxybenzoate polyprenyl transferase from Escherichia coli. Biochim. Biophys. Acta 1212: 93- 102 https://doi.org/10.1016/0005-2760(94)90193-7
  10. Nichols, B. P. and J. M. Green. 1992. Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J. Bacteriol. 174: 5309-5316 https://doi.org/10.1128/jb.174.16.5309-5316.1992
  11. Okada, K., T. Kainou, K. Tanaka, T. Nakagawa, H. Matsuda, and M. Kawamukai. 1998. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter surboxydans. Eur. J. Biochem. 255: 52-59 https://doi.org/10.1046/j.1432-1327.1998.2550052.x
  12. Park, Y. C., S. J. Kim, J. H. Choi, W. H. Lee, K. M. Park, M. Kawamukai, Y. W. Ryu, and J. H. Seo. 2005. Batch and fed-batch production of coenzyme $Q_{10}$ in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 67: 192-196 https://doi.org/10.1007/s00253-004-1743-y
  13. Schwender, J., M. Seemann, H. K. Lichtenthaler, and M. Rohmer. 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehydes 3-phosphate nonmevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 316: 73-80 https://doi.org/10.1042/bj3160073
  14. Seo, M. J., E. M. Im, J. H. Hur, J. Y. Nam, C. G. Hyun, Y. R. Pyun, and S. O. Kim. 2006. Production of coenzyme $Q_{10}$ by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti. J. Microbiol. Biotechnol. 16: 933-938
  15. Yang, W., L. Zhang, Z. Lu, W. Tao, and Z. Zhai. 2001. A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Expr. Purif. 22: 472-478 https://doi.org/10.1006/prep.2001.1453