The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar (Microbial Ecology Department, Institute of Microbiology, Warsaw University) ;
  • Kiersztyn, Bartosz (Microbial Ecology Department, Institute of Microbiology, Warsaw University) ;
  • Chrost, Ryszard J. (Microbial Ecology Department, Institute of Microbiology, Warsaw University)
  • Published : 2007.06.30

Abstract

The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Keywords

References

  1. Arunmozi, G., R. Jayavel, and C. Subramanian. 1997. Experimental determination of metastable zone width, induction period and interfacial energy of LAP family crystals. J. Crystal Growth 178: 387-392 https://doi.org/10.1016/S0022-0248(96)01163-3
  2. Billen, G. 1991. Protein degradation in aquatic environments, pp. 123-141. In R. Chrost (ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York
  3. Bright, J. J. and M. Fletcher. 1983. Amino acid assimilation and respiration by attached and free-living populations of a marine Pseudomonas sp. Microb. Ecol. 9: 215-226 https://doi.org/10.1007/BF02097738
  4. Bronk, D. A., P. M. Gilbert, T. C Malone, S. Banahan, and E. Sahlsten. 1998. Inorganic and organic nitrogen cycling in Chesapeake Bay: Autotrophic versus heterotrophic processes and relationship to carbon flux. Aquat. Microb. Ecol. 15: 177-189 https://doi.org/10.3354/ame015177
  5. Carlson, C. A., H. W. Ducklow, and A. F. Michaels. 1994. Annual flux of dissolved organic carbon from the eutrophic zone in the northwestern Sargasso Sea. Nature 371: 405- 408 https://doi.org/10.1038/371405a0
  6. Christian, J. R. 1995. Biochemical mechanisms of bacterial utilization of dissolved and particular organic matter in the upper ocean. PhD thesis, University of Hawaii, Honolulu
  7. Christian, R. and D. M. Karl. 1998. Ectoaminopeptidase specificity and regulation in Antarctic marine pelagic microbial communities. Aquat. Microb. Ecol. 15: 303-310 https://doi.org/10.3354/ame015303
  8. Chrost, R. J., W. Siuda, D. Albrecht, and J. Overbeck. 1986. A method for determining enzymatically hydrolysable phosphate (EHP) in natural waters. Limnol. Oceanogr. 31: 662-667 https://doi.org/10.4319/lo.1986.31.3.0662
  9. Chrost, R. J. 1990. Microbial ectoenzymes in aquatic environments, pp. 47-78. In J. Overbeck and R. J. Chrost (eds.), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York
  10. Coffin, R. B. 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34: 531-542 https://doi.org/10.4319/lo.1989.34.3.0531
  11. Grossart, H. P. and M. Simon. 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15: 127-140 https://doi.org/10.3354/ame015127
  12. Guellil, A., M. Boualam, H. Quiquampoix, P. Ginestet, J. M. Audic, and J. C. Block. 2001. Hydrolysis of wastewater colloidal organic matter by extracellular enzymes extracted from activated sludge flocs. Water Sci. Technol. 43: 33-40 https://doi.org/10.2166/wst.2001.0334
  13. Halemejko, G. Z. and R. J. Chrost. 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in eutrophic lake. Arch. Hydrobiol. 107: 1-21
  14. Hollibaugh, J. T. and F. Azam. 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104-1116 https://doi.org/10.4319/lo.1983.28.6.1104
  15. Hoppe, H. G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11: 299-308 https://doi.org/10.3354/meps011299
  16. Hoppe, H. G., K. Sang-Jin, and K. Gocke. 1988. Microbial decomposition in aquatic environments: Combined process of extracellular enzyme activity and substrate uptake. Appl. Environ. Microbiol. 54: 784-790
  17. Hoppe, H. G., H. Ducklow, and B. Karrasch. 1993. Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean. Mar. Ecol. Prog. Ser. 93: 277-283 https://doi.org/10.3354/meps093277
  18. Keil, R. G. and D. L. Kirchman. 1993. Dissolved combined amino acids: Chemical form and utilization by marine bacteria. Limnol. Oceanogr. 38: 1256-1270 https://doi.org/10.4319/lo.1993.38.6.1256
  19. Keil, R. G. and D. L. Kirchman. 1999. Utilization of dissolved protein and amino acids in the northern Sargasso Sea. Aquat. Microb. Ecol. 18: 293-300 https://doi.org/10.3354/ame018293
  20. Kirchman, D. L. and P. A. Wheeler. 1998. Uptake of ammonium and nitrate by heterotrophic bacteria and phytoplankton in the sub-Arctic Pacific. Deep-Sea Res. 45: 347-365 https://doi.org/10.1016/S0967-0637(97)00075-7
  21. Kroer, N., N. O. G. Jorgensen, and R. B. Coffin. 1994. Utilization of dissolved nitrogen by heterotrophic bacterioplankton: A cross-ecosystem comparison. Appl. Environ. Microbiol. 60: 4116-4123
  22. Lebo, M. 1990. Phosphate uptake along a coastal plain estuary. Limnol. Oceanogr. 35: 1279-1289 https://doi.org/10.4319/lo.1990.35.6.1279
  23. Lindroth, P. and K. Mopper. 1978. High performance liquid chromatographic determination of subpicomol amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal. Chem. 51: 1667-1674 https://doi.org/10.1021/ac50047a019
  24. Martinez, J., D. C. Smith, G. F. Steward, and F. Azam. 1996. Variability in ectohydrolitic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223-352 https://doi.org/10.3354/ame010223
  25. Maselli, A., G. Laevsky, and D. Knecht. 2002. Kinetics of binding, uptake and degradation of live fluorescent (DsRed) bacteria by Dictyostelium discoideum. Microbiology 148: 413-420 https://doi.org/10.1099/00221287-148-2-413
  26. Middelboe, M., N. H. Borch, and D. L. Kirchman. 1995. Bacterial utilization of dissolved free amino acids, dissolved combined amino acids and ammonium in the Delawere Bay estuary: Effects of carbon and nitrogen limitation. Mar. Ecol. Prog. Ser. 128: 109-120 https://doi.org/10.3354/meps128109
  27. Nagata, T. and D. L. Kirchman. 1996. Bacterial degradation of proteins adsorbed to model submicron particles in seawater. Mar. Ecol. Prog. Ser. 132: 214-248
  28. Porter, K. G. and Y. S. Feig. 1980. Use of DAPI for identifying and counting aquatic microflorea. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  29. Rosenstock, B. and M. Simon. 1993. Use of dissolved combined and free amino acid by planktonic bacteria in Lake Constance. Limnol. Oceanogr. 38: 1521-1531 https://doi.org/10.4319/lo.1993.38.7.1521
  30. Roth, M. 1971. Fluorescence reaction for amino acids. Anal. Biochem. 43: 880-882
  31. Sharp, J. H. 1983. The distribution of inorganic nitrogen and dissolved and particular organic nitrogen in the sea, pp. 1- 35. In E. J. Carpenter and D. G. Capone (eds.), Nitrogen in the Marine Environment. Academic Press, New York
  32. Siuda, W. 1985. The role and importance of phosphatases for mineralization of organic phosphorus compounds in eutrophic lake. PhD thesis, Warsaw University, Warsaw (in Polish)
  33. Siuda, W. and R. J. Chrost. 2002. Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status. Pol. J. Environ. Studies 11: 367- 373
  34. Smith, D. C., M. Simon, A. L. Alldredge, and F. Azam. 1992. Intense hydrolytic enzyme activity on marine aggregates and its implications for rapid particle dissolution. Nature 359: 139-142 https://doi.org/10.1038/359139a0
  35. Smith, E. M. and W. M. Kemp. 1995. Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar. Ecol. Prog. Ser. 116: 217-231 https://doi.org/10.3354/meps116217
  36. Somville, M. and G. Billen. 1983. A method for determining exoproteolytic activity in natural waters. Limnol. Oceanogr. 28: 190-193 https://doi.org/10.4319/lo.1983.28.1.0190
  37. Tanoue, E., S. Nishiyama, M. Kamo, and A. Tsugita. 1995. Bacterial membranes: Possible source of a major dissolved and particulate phases in the water column, pp. 53-83. In R. W. Eppley (ed.), Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, Berlin
  38. Tanoue, E. 1996. Characterization of the particulate protein in Pacific surface waters. J. Mar. Res. 54: 967-990 https://doi.org/10.1357/0022240963213637
  39. Touminen, E., T. Kairesalo, and H. Hartikainen. 1994. Comparison of methods for inhibiting bacterial activity in sediment. Appl. Environ. Microbiol. 60: 3454-3457
  40. Vives-Rego, J., G. Billen, A. Fontigny, and M. Somville. 1985. Free and attached proteolytic activity in water environments. Mar. Ecol. Prog. Ser. 21: 245-247 https://doi.org/10.3354/meps021245
  41. Williams, P. M. 1986. Chemistry of dissolved and particulate phases in the water column, pp. 53-172. In W. Eppley (ed.), Plankton Dynamics of the Southern California Bight. Springer-Verlag, New York
  42. Worm, J., K. Gustavson, K. Garde, N. H. Borh, and M. Sondergaard. 2001. Functional similarity of attached and free-living bacteria during freshwater phytoplankton blooms. Aquat. Microb. Ecol. 25: 103-111 https://doi.org/10.3354/ame025103
  43. Yin, L. and R. Chrost. 2006. Enzymatic activities in petroleum wastewater purification system by an activated sludge process. J. Microbiol. Biotechnol. 16: 200-204