Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak (Department of Chemical Engineering, Yonsei University) ;
  • Min, Byoung-Ryul (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Yong-Woo (Department of Chemical Engineering, Yonsei University) ;
  • Kang, Sang-Wook (School of Chemical & Biological Engineering, Seoul National University) ;
  • Won, Jong-Ok (Department of Applied Chemistry, Sejong University) ;
  • Kang, Yong-Soo (Department 01 Chemical Engineering, Hanyang University)
  • Published : 2007.06.30

Abstract

Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

Keywords

References

  1. K. Wang and E. I. Stiefel, Science, 291, 106 (2001)
  2. R. W. Baker, Ind. Eng. Chem. Res., 41, 1393 (2002)
  3. H. Y. Huang, J. Padin, and R. T. Yang, J. Phys. Chem. B, 103, 3206 (1999) https://doi.org/10.1021/jp9845219
  4. W. Hu and A. Tanioka, J. Phys. Chem. B, 105, 4629 (2001) https://doi.org/10.1021/jp003045v
  5. R. M. Goering, C. N. Bowman, C. A. Koval, R. D. Noble, and D. L. Williamson, J. Membrane Sci., 144, 133 (1998)
  6. J.-S. Yang and G.-H. Hsiue, J. Membrane Sci., 126, 139 (1997)
  7. H. Shinohara, H. Shibata, D. Wöhrle, and H. Nishide, Macromol. Rap. Commun., 26, 467 (2005)
  8. B. Q. Shentu and H. Nishide, Ind. Eng. Chem. Res., 42, 5954 (2003)
  9. B. Shentu, H. Shinohara, and H. Nishide, Polymer J., 33, 807 (2001) https://doi.org/10.1295/polymj.33.1
  10. J. H. Kim, M. R. Min, J. Won, and Y. S. Kang, Macromol. Res., 14, 199 (2006) https://doi.org/10.1007/BF03218509
  11. J. H. Kim, J. Won, and Y. S. Kang, Macromol. Res., 12, 145 (2004)
  12. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, J. Phys. Chem. B, 106, 2786 (2002) https://doi.org/10.1021/jp022095s
  13. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Chem. Eur. J., 8, 650 (2002) https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  14. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, Macromolecules, 35, 5250 (2002) https://doi.org/10.1021/ma011278u
  15. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, J. Polym. Sci.; B: Polym. Phys., 40, 1813 (2002) https://doi.org/10.1002/polb.10241
  16. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Macromolecules, 36, 4577 (2003)
  17. S. Sunderrajan, B. D. Freeman, C. K. Hall, and I. Pinnau, J. Membrane Sci., 182, 1 (2001) https://doi.org/10.1016/S0376-7388(00)00569-X
  18. I. Pinnau and L. G. Toy, J. Membrane Sci., 184, 39 (2001) https://doi.org/10.1016/S0376-7388(00)00604-9
  19. J. H. Kim, S. H. Joo, C. K. Kim, Y. S. Kang, and J. Won, Macromol. Res., 11, 375 (2003)
  20. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, Macromolecules, 36, 6183 (2003)
  21. T. C. Merkel, Z. He, A. Morisato, and I. Pinnau, Chem. Commun., 1596 (2003)
  22. J. H. Kim, J. Won, and Y. S. Kang, J. Membrane Sci., 241, 403 (2004)
  23. J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, J. Membrane Sci., 212, 283 (2003)
  24. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Langmuir, 12, 909 (1996)
  25. Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105 (1996)
  26. B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang, and H. S. Kim, Chem. Commun., 2046 (2001)
  27. P. Y. Silvert, R. Herrera-Urbina, and K. Tekaia-Elhsissen, J. Mater. Chem., 7, 293 (1997)
  28. Y. P. Li, Y. E. Fang, R. Fan, and J. Y. Xing, Rad. Phys. Chem., 60, 637 (2001) https://doi.org/10.1016/S0969-806X(00)00422-9
  29. B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc., 129, 1434 (1982)