Diffraction Analysis of LC Gratings based on Linearly Graded Phase Model for Surface Anchoring Energies

  • Yu, Chang-Jae (Department of Electronics and Computer Engineering, Hanyang University, Member, KIDS) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University, Member, KIDS)
  • Published : 2007.09.30

Abstract

We reported the diffraction analysis of the liquid crystal (LC) binary gratings and the surface anchoring energies for planar and homeotropic alignments. The planar and homeotropic anchoring energies were directly derived based on the linearly distorted director distribution near domain boundaries, in which the distorted lengths correspond to the extrapolation lengths into both planar and homeotropic regions. From the diffraction analysis for the LC binary gratings with various grating periods based on the linearly graded phase model, both distorted lengths into planar and homeotropic regions were simultaneously obtained. In this work, the planar and homeotropic anchoring energies were found to be about $1.4\;{\times}\;10^{-4}\;J/m^2$ and $0.9\;{\times}\;10^{-5}\;J/m^2$, respectively.

Keywords

References

  1. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002) https://doi.org/10.1016/S0030-4018(02)01598-5
  2. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, Opt. Lett. 26, 587 (2001) https://doi.org/10.1364/OL.26.000587
  3. M. Ivanov and T. Eiju, Proc. SPIE 4580, 664 (2001)
  4. S. Jung, J.-H. Park, H. Choi, and B. Lee, Appl. Opt. 42, 2513 (2003) https://doi.org/10.1364/AO.42.002513
  5. H. Ono, S. Oikawa, and N. Kawatsuki, J. Appl. Phys. 101, 123523 (2007) https://doi.org/10.1063/1.2749485
  6. D. Riviere, Y. Levy, and E. Guyon, J. Phys. (France) Lett. 40, L215 (1979) https://doi.org/10.1051/jphys:01979004003021500
  7. G. Barbero, N. V. Madhusudana, and G Durand, J. Phys. (France) Lett. 45, L613 (1984) https://doi.org/10.1051/jphyslet:019840045012061300
  8. K. H. Yang, J. Appl. Phys. 53, 6742 (1982) https://doi.org/10.1063/1.330060
  9. H. Yokoyama and H. A. van Sprang, J. Appl. Phys. 57, 4520 (1985) https://doi.org/10.1063/1.335352
  10. F. Yang, J. R. Sambles, Y. Dong, and H. Gao, J. Appl. Phys. 87, 2726 (2000) https://doi.org/10.1063/1.372247
  11. F. Yang, L. Ruan, and J. R. Sambles, J. Appl. Phys. 88, 6175 (2000) https://doi.org/10.1063/1.1324695
  12. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, Appl. Opt. 43, 1783 (2004) https://doi.org/10.1364/AO.43.001783
  13. C.-J. Yu, J.-H. Park, and S.-D. Lee, Appl. Surf Sci. 238, 385 (2004) https://doi.org/10.1016/j.apsusc.2004.05.162
  14. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993)
  15. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Chichester, 1988)
  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes : The Art of Scientific Computing (Cambridge University Press, New York, 1986)
  17. A. Rapini and M. J. Papoular, J. Phys. (Paris) Colloq. 30, C4-54 (1969)
  18. J. W. Goodman, Introduction to Fourier Optics (McGrawHill Book Co., Singapore, 1996)
  19. J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, Appl. Phys. Lett. 83, 1918 (2003) https://doi.org/10.1063/1.1609042
  20. Data provided by E. Merck Company