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It is widely recognized that increasing the accuracy and diversity of rotating machinery necessitates an
appropriate diagnostic technique and maintenance system. Until now, operators have monitored machinery using

their senses or by analyzing simple changes to root mean square output values.

We developed an expert

diagnostic system that uses fuzzy inference to expertly assess the condition of a machine and allow operators to
make accurate judgments. This paper describes the hardware and software of the expert diagnostic system. An
assessment of the diagnostic performance for five fault phenomena typically found in pumps is also described.

1. Introduction

Many general plants such as power plants contain pressurized
vessels, piping equipment, and moving facilities. The major
component of a moving facility is its rotating machinery, which
moves or compresses fluid using a motor. Rotating machinery can
consist of a pump, compressor, engine, turbine, generator, gear set,
and other components, and is unstable and vulnerable to breakdowns
due to the high pressures and speeds at which the components operate.
Breakdowns of rotating machinery occur often and are generally
associated with major economic losses. Increases in the speed and
precision at which rotating machinery operates, brought about by
continued industrial development, have accentuated these losses.

There are several methods that can be used to perceive abnormal
conditions in rotating machinery.? These include visual inspections,
vibration monitoring, tribology-based monitoring, process parameter
monitoring, nondestructive testing techniques, and ultrasonic
monitoring. Vibration monitoring has been shown to be the most
sensitive and reliable testing method.

Predictive maintenance is necessary to avoid costly machinery
breakdowns. This consists of vibration root cause and signal analyses,
and provides periodic reliability and stability inspections without the
over-maintenance associated with general inspections.’ Rotary
machinery, in particular, requires predictive maintenance due to the
cumulative damage that moving parts sustain over their lifetime.

An accurate diagnosis of vibrations in rotating machinery must
consist of data measurement, acquisition, and analysis, followed by a
judgment. Previous research has focused on diagnostic algorithms
that use signal processing techniques, neural networks, and fuzzy
inference to assess measured vibrations and noise signals.**

However, additional hardware and sensors for measuring
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vibration signals must be developed in addition to these diagnostic
algorithms. An expert-level diagnostic system integrates principal
sofiware and hardware suitable for diagnosing vibration signals in
rotating machinery with artificial intelligence-based signal processing
and determination techniques.

This study proposes an expert-level diagnostic system for early
measurement and predictive maintenance of abnormal vibration
phenomena in rotating machinery. The proposed diagnostic system
was tested on a pump, which is a common fixture in industry.
Abnormal fault phenomena were detected, the measuring point was
determined, and a measurement system was constructed to analyze
the vibration signals from the test pump. The diagnostic system was
constructed by developing a hardware interface, data monitoring,
signal processing, and user interface modules. The diagnostic
performance of the complete system was the evaluated through
simulations.

2. Facility Expert Diagnostic System

2.1 Facility diagnosis of rotating machinery

Rotating machinery generally consists of a shaft, couplings, and
bearings. The diagnosis of faulty behavior in rotating machinery has
been well researched, primarily by assessing the vibration and noise
signals of the machinery. Abnormal phenomena that cause assessable
vibration and noise signals can be classified into the following five
categories.

2.1.1 Unbalanced shaft
An unbalanced shaft is the most vexing abnormal phenomenon.
This occurs when the center of mass and the geometric center of the
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shaft are not coincident. When the shaft is in an unbalanced state, it
vibrates with an amplitude that increases rapidly with increasing
rotating frequency.

2.1.2 Misalignment

Misalignment is a common abnormal phenomenon of rotating
machinery. Misalignment generally occurs when two coupled shafts
are not aligned, and the phenomenon results in the machinery
vibrating at twice its operating frequency. The vibration caused by
misalignment has a high axial component rather than a radial
component.

2.1.3 Oil whip

Oil whip occurs when a shaft wears or slips due to an oil edge
phenomenon that occurs in the journal bearing. When machinery
operates at low frequencies that are less than twice the fractional
frequency of the system, an oil whip may cause a dramatic increase in
the amplitude of the vibration.

2.1.4 Bearing fault

As principal construction elements, bearings support shafts and
maintain their smooth rotation. The mechanical failure of a bearing,
such as that caused by the cracking of a ball or race, has a negative
impact on the rotating machinery. Therefore, bearings with abnormal
attributes, such as wear, need to be replaced. Bearing failures result
in a specific, abnormal frequency in the shaft rotation that leads to an
unbalancing of the shaft, resulting in the formation of a side band. A
side band is a region of wear on the shaft that occurs because a pair of
defective frequencies is centered about the running frequency. Most
bearing faults are accompanied by some shock and abnormal noise.

2.1.5 Mechanical looseness

Mechanical looseness occurs when nonrotating connections, such
as bearing caps, bearing mounts, or base mounts, are out of order.
The phenomenon also occurs when an unbalanced or misaligned shaft
is neglected. Mechanical looseness is likely to cause a vibration
problem because the bearings and mounts are the devices that
constrain the shaft to its rotational centerline. When the connective
force of the connection parts becomes weak, a shock vibration may
oceur at a high-order harmonic frequency that, if maintained, can
result in resonance.

2.2 Fuzzy inference method

Fuzzy inference is a method that is used to consider uncertainty.
It quantifies the subjective assessment made by a human into a real
value between 0 and 1% The fuzzy inference method can be
particularly effective when the weighting values used in an
assessment are subject to variation or when the exact information on
the conditional probability distribution of a subject is not available.?

Facility diagnosis can be problematic due to the obscurity of the
data or diagnostic information obtained from a mechanism
experiencing an abnormal condition. In this study, the diagnostic
readability of obscure data is enhanced by the fuzzy inference method.
The vibration signal is processed and the diagnostic index is extracted
using a signal processing technique. Subsequently, fuzzy inference is
used as the judgment method for assessing the diagnostic index.

In fuzzy inference, the general form of a rule is “IF A and B
THEN C”, where A, B, and C are linguistic variables. In the
diagnostic method, the correlation matrix for inputs A and B and
output U is obtained through the maximum—minimum synthetic law
using the membership function of each linguistic variable, as shown
in Equation (1):

Hp (xveru)
= max[min{,uA (‘xl ), Hp (xz ), Hy (u)}]

Defuzzification is required to determine the weighting value of the
operative variation from the output membership function. The mass
center method is used:
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where u* represents the defuzzification value.

3. Development of the Expert Diagnostic System

3.1 Construction

A schematic diagram of the expert diagnostic system developed
in this study is shown in Fig. 1. The expert diagnostic system can be
divided into hardware and software. The hardware consisted of input
signal components, which changed the physical signal into an
electrical signal; an A/D converter, which changed the electrical
signal to numerical data; and the memory, which temporarily stored
the numerical data. The hardware is currently constructed with one
channel, but its fundamental structure can be adapted for use with
multiple channels in the future. Because the physical signal used by
the diagnostic algorithm is a vibration signal, a suitable accelerometer
and amplifier were selected by investigating the frequency tendency.
An A/D converter with 16 channels was selected to accommodate
multiple input channels for future use. The number of channels can
be modified according to the measurement system being used. The
software consisted of a hardware control component; a signal
processing component, which extracted the desired information from
the measured signals; and a signal decision component, which judged,
stored, and managed the processed signal.
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Fig. 1 Schematic diagram of the developed system

Recorded vibration data were transformed to RMS values within
the time domain, and to multiple diagnostic indices within the
frequency domain. Using fuzzy inference, the transformed data were
printed as the diagnostic results of the present facility. A RMS
variance trend was also generated.

A Windows-based laptop computer was used for the data analysis.
The software was constructed using the LabWindows/CVI building
program by National Instruments.

3.2 Diagnostic algorithm

The measured vibration data were transformed into useful
information by extracting diagnostic indices using a signal processing
technique. Several fundamental diagnostic indices were selected,
including the RMS values of the vibration signal, which were
established with a conventional diagnostic method, and the amplitude
of the first running frequency. The fundamental indices also included
assistance indices, such as a side band, a high-order harmonic
frequency, and the vibration level in the axial direction. The
membership function that constituted the difference between the
normally distributed vibration RMS value and the measured RMS
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value is shown in Fig. 2(a). Membership functions use fundamental
information for fuzzy inference and are modeled afer the sensitive
standard of judgment of a human expert. Such modeling is achieved
by graphing the RMS value differences on an x-axis and noting the
triangular region of values that apply in a conventional diagnosis. In
addition, four linguistic variables (approximately zero or AZ, small or
SM, medium or ME, and big or BI) were plotted on the y-axis as
normalized values between O and 1. Fig. 2(b) shows a similar
membership function plotted about the amplitude difference of the
measured first running frequency of the rotating machinery. The
region of the x-axis or the linguistic variable was equal to a functional
expression of the RMS difference.’
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Fig. 2 Membership function of the diagnostic index

Fig. 3 shows the membership function about the diagnostic results
of each output. The values on the x- and y-axes have been normalized
to values between 0 and 1. The linguistic variables are normal (NO),
caution (CA), fault (FA), and alarm (AL).
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Fig. 3 Membership function of the output

A variety of rules were required to draw inference from the
membership function constructed about the fundamental diagnostic
indices. For this, a judgment table of RMS values and first running
frequency amplitudes was constructed, as shown in Table 1. Sixteen
rules for diagnosing rotating machinery were extracted from the table.

IF RMS is AZ and 1st RF is AZ THEN output is NO
IF RMS is AZ and 1st RF is SM THEN output is CA

IF RMS is Bl and 1st RF is B THEN output is AL

Table 2 was constructed from RMS difference values and the number
of indices detected by the assistance diagnostic index. A total of 16
rules were extracted, similar to Table 1. The results inferred by each
judgment table were integrated.

Table 1 Judgment table for the RMS and first RF differences

1st RF
RMS AZ SM ME BI
AZ NO CA FA AL
SM CA CA FA AL
ME FA FA AL AL
Bl AL AL AL AL

Table 2 Judgment table for RMS difference and the number of indices

Index

AMS 0 1 2 3
AZ NO NO CA FA
SM CA CA FA AL
ME FA FA AL AL
Bl AL AL AL AL

3.3 Construction of the hardware and software

Fig. 4 Hardware of the expert diagnostic system

The hardware of the expert diagnostic system was developed as
shown in Fig. 4. A voltage vibration accelerometer with a power
source and an amplifier was used as the fundamental sensor for the
prototype of the diagnostic system. The sensor worked as follows.
An amplified vibration signal passed through the connector block and
was inputted into the A/D converter. To use a microphone, which is
the fastest form of sensor, the A/D converter must be able to measure
more than two channels of audio frequency at 20 kHz, and when
measuring vibration, must be able to measure more than three
channels at 1 kHz. Therefore, we used a PCMCIA A/D converter,
which is suitable for use with a laptop computer and capable of
processing 16 input channels at 250 kHz. The driver file, which
controls the A/D converter, used a double buffer to avoid interfering
with the data collection while performing other diagnostic tasks on
the computer. The diagnostic software processed the data acquired
from the accelerometer using a signal processing method and
outputted the diagnostic results using the fuzzy inference method.
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Fig. 5 Schematic diagram of the expert diagnostic system software

The diagnostic system software was developed by modulating
each program. Therefore, it was straightforward to delete unnecessary
processes and upgrade or add new functions. Additionally, the use of
the fuzzy inference method improved the reliability of the outputted
diagnostic results. The modulation of each program made the system
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management easier for field workers without expertise in the
vibration field while still providing users with expert vibration
analysis results. Figs. 67 outline and highlight the features of the
diagnostic system.
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4. Diagnostic Simulation

The vibration signal from the test pump was measured and
assumed to be steady to verify the reliability of the diagnostic
algorithm on which the expert system was based. The vibration signal
had to be measured under the five types of abnormal conditions noted
in Section 2. The diagnostic simulation was performed as described
below.

4.1 Simulated diagnosis of an unbalanced pump

The acceleration signal indicative of an unbalanced pump is
shown in Fig. 8. Fig. 8(a) gives the normal acceleration signal of a
pump, and Fig. 8(b) represents the vibration signal of an unbalanced
pump. In Fig. 8(b), the amplitude of the accelerometer measuring the
first running frequency increased 2.6 times at 60 Hz and the RMS
value increased 1.2 times due to the random noise associated with the
imbalance. Fig. 9 shows the newly developed diagnostic system
analysis of the accelerometer signal. The system was not able to
diagnose a lack of “normality” unless it continuously monitored the
frequency shape of the normal condition in the field and compared
that to the present condition.
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Fig. 8 Change in vibration signal caused by an unbalanced pump

However, the RMS value was 1.2 times that of the original RMS
value of the first running frequency and several diagnostic indices.
Thus, the diagnostic system noted that the machinery was sustaining
“unbalance,” and the system was judged as being in the “warning”
condition.
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Fig. 9 Diagnostic results for an unbalanced pump

4.2 Simulated diagnosis of misalignment

To represent the misalignment phenomenon, the amplitude of the
first running frequency in the axial direction of the measured normal
accelerometer signal was increased threefold at 58 Hz. Random noise
was also added to the RMS value so as to increase it 1.2 times.
Finally, the normal accelerometer signal was modified to have more
than two times its original RMS vibration level in the vertical
direction. The normal and modified signals are shown in Fig. 10.
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Fig. 10 Change in vibration signal caused by a misalignment
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A general diagnosis, which considers only RMS values, will
recognize the 1.2-fold increase in the RMS of the axial vibration and
attribute it to changes that occurred in the field. However, the newly
developed diagnostic system recognized the signal shown in
Fig. 10(b) as being caused by “misalignment,” and the system thus
judged the machinery to be in a “warning” condition, as shown in
Fig. 11.
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Fig. 11 Diagnostic results for a misalignment

4.3 Simulated diagnosis of a bearing fault

svm'3

7

6

5

>

3

. WA ]

ML WVN SN ] el
l] W \\/’W"“\J
00 200 400 600 800 119[(;0 1200 1400 1600 1800 2000
(a) Normal pump

8 ,‘“-3

e

GL

st
>4 1

y v
1

0

0 200 400 600 800 1&00 1200 1400 1600 1800 2000
z

(b) Pump with a bearing fault

Fig. 12 Changg in vibration signal caused by a bearing fault
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Fig. 13 Diagnostic results for a bearing fault

Fig. 12 shows the normal and abnormal acceleration signals used
to diagnose a bearing fault. The first running frequency in the vertical
direction and its corresponding harmonic frequency were modified to

contain a side band and a RMS value with noise added such that it
was 2.2 times its original value to represent an accelerometer signal
that would occur with a bearing fault. Because of the high RMS
value, a general diagnosis was able to verify that such a condition was
“abnormal,” but it was not able to determine that the cause was a
“bearing fault.” However, Fig. 13 illustrates that the developed
diagnostic system indicated a “bearing fault” condition, and it judged
the machinery to be in a “warning” condition.

4.4 Simulated diagnosis of an oil whip

The oil whip phenomenon occurs in the low-frequency region.
Therefore, the accelerometer signal was measured until it reached
200 Hz to diagnose the phenomenon. Fig. 14 shows the normal and
abnormal accelerometer signals associated with an oil whip; the oil
whip was simulated by increasing the frequency near its peak value at
58 Hz, resulting in an amplitude that was three times greater than the
normal signal. In addition, the overall RMS value was increased to
2.2 times its original value by adding random noise.
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Fig. 14 Change in vibration signals caused by an oil whip
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Fig. 15 Diagnostic results for an oil whip

As shown in Fig. 14(b), the general diagnostic method was able to
identify the machinery as being in an abnormal condition due to the
elevated RMS values. However, a general diagnosis would require
continuous frequency analyses and monitoring in order to judge the
abnormal condition as having resulted from an “oil whip.” Fig. 15
shows that the developed diagnostic system indicated an “oil whip”
phenomenon and it judged the machinery to be in a “warning”
condition.
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4.5 Simulated diagnosis of mechanical looseness

In order to generate an acceleration signal that would occur under
mechanical looseness, a normal acceleration signal was added to the
harmonic frequency component. The RMS value was also increased
to three times its original value, as shown in Fig. 16.
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Fig. 16 Change in vibration signals caused by mechanical looseness
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Fig. 17 Diagnostic results for mechanical looseness

The general diagnostic method was able to verify the occurrence
of an abnormal condition due to the threefold increase in the RMS
values. However, a more precise analysis was required to identify the
root cause of the condition. Fig. 17 shows that the developed
diagnostic system identified a “mechanical looseness” phenomenon,
and the machinery was thus judged as being in a “warning” condition.

5. Conclusions

In this study, hardware and software were constructed to develop
an expert diagnostic system. We performed diagnostic simulations
using normal and modified accelerometer signals to identify
abnormal conditions of a pump, which is a common form of rotating
machinery in industry. The following conclusions were drawn from
the simulations.

1. The constructed diagnostic monitoring system could both store
vibration data and interface with a computer to analyze the vibration
data.

2. By diagnosing five abnormal phenomena, the developed
diagnostic system was verified to be more precise than a conventional

diagnostic method, which only examined changes in the RMS values.
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