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Leverage Measures in Nonlinear Regressionl)

Myung—Wook Kahng?)

Abstract

Measures of leverage in nonlinear regression models are discussed by
extending the leverage iIn linear regression models. The connection
between measures of leverage and nonlinearity of the models are explored.
Illustrative example based on real data is presented.
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1. Introduction

It is well known that statistical inferences can be substantially influenced by
one observation or a few observations in regression models; that is, not all
observations have equal importance. In assessing the importance of individual
observations, one is typically interested in identifying observations that have a
greater—-than—average impact on the estimation of model parameters and fitted
values. These influential points are often identified through the use of case
deletion and perturbation diagnostics.

Leverage is one of the basic components of influence in linear regression models
(Chatterjee and Hadi, 1986). By Belsley, Kuh, and Welsch(1980) and Ross(1987),
leverage has been generalized via linear approximation to more complex response
models. Emerson, Hoaglin, and Kempthorne(1984) considered definitions of leverage
for the nonlinear regression models.

Here, we discuss measures of leverage in nonlinear regression models. In
Section 2, we briefly review the leverage in linear regression models. We develop
the measures of leverage in nonlinear models in Section 3. In Section 4, we
provide examples, and in Section 5, we discuss the relationship between these
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measures and nonlinearity.

2. Leverage in Linear Regression

The usual linear model can be written in matrix form as
y=— Xf+e

where y is nxX1 vector of responses, X is the nXp matrix of fixed predictor
values, B is the pXx1 vector of regression coefficients, and € is the vector of

independent errors each with mean 0 and variance o°.
Assuming X has full column rank, we define the n><Xn hat matrix as

H=XXx"x)"'x7*

with elements H= {h,;j}. The matrix 1s a linear operator which projects onto

S(X)c R". Tt was named the "hat” matrix by John Tukey because it puts the
"hat” on the vector of fitted values

y= Hy .

The diagonal elements h; of the hat matrix are called leverages and generally
show how sensitive the @Z is to perturbations in the corresponding observed
response, ¥;. Suppose we modify y by adding be; where b is a fixed constant and

¢, indicates the i-th standard basis vector for R" with a 1 in the i—th position
and 0's elsewhere. Then the fitted values based on y+be; are

y(b)= Hy+bHc,

so that

and thus

where h; is the i-th column of H. We can therefore think of h;; as the rate of
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change In g} ; when perturbating y;. In particular, h; is the rate of change in @i
when perturbating ;.

There are several useful implications of these results: 0 < hy; =1, so g}i can
never change faster than y,. If h; =1 then z},-, =vy;, consequently, one parameter
estimated is being determined by one observation. Increasing y; never decreases
3}7 Fitted values for cases with h; relatively large are relatively more variable,
Var(y,;) = h;o”.

In the next section the idea of leverage in nonlinear regression i1s developed in a
manner similar to that for linear regression.

3. Leverages in Nonlinear Regression

The standard nonlinear regression model can be expressed as
Y, = f(:z:7 0)+ €, t=1,--,n

in which the ¢-th response ¥; is related to the g¢-dimensional vector of known
explanatory variables #; through the known model function f, which depends on
the p-dimensional unknown parameter §< 6, and ¢; is error. We assume that f is
twice continuously differentiable in 6, and errors €, are iid normal random

. . . 2 . . .
variables with mean 0 and variance o°. In matrix notation we may write,

y=f(X.0)+¢
where y is an n—-dimensional vector with elements ¥y, ---,y,, X is an nX¢ matrix
with rows z{,-.z! € is an n-dimensional vector with elements €, -,¢,, and

f(X,0)=(f(z,,0),.f(,.0)" =(f 8),-.f,0)" = f6). Given the response vector
y, the least squares estimate of 8 is denoted 9, and the predicted response vector
is y=f(X.0)=5(0).

A tangent plane approximation to the expectation surface {f(0)|0=6} at 0 is
used to make inferences about € through the derived linear model

F(6)=75(0)+ V(6—6)

where V= V(@) =0f/00" is the nXp matrix and V= V(8). DBased on the this
approximation, the tangent plane leverage matrix, denoted by fl, can be written as

H= V(v
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The diagonal elements l;n of H are frequently used as a measure of leverage in
nonlinear regression (Ross, 1987).

Emerson, Hoaglin, and Kempthorne(1984) generalized the measures of leverage
due to perturbation of response as follows. Modifying the response vector y by
adding bc; gives the perturbed response vector y+bec,. The least square estimate
of 0 for the perturbed data is denoted 9(1)), and the perturbed predicted response
vector is

y(b)=f(X,0(0))=f(0(b)).

Then, following the discussion of linear regression in the last section, we can base
leverages in nonlinear regression on limits of the form

111’1’1 3}(13) — .7;
b0 b

To find an informative expression that allows relatively straight—forward
calculation, let 6(b) indicate the ordinary least squares estimate of 8 with response
y+be, 6(0) and 6(0) be 20(b)/ob and 5°0(b)/ob> both evaluated at b=0,
respectively. Then, expanding around b= 0 up to terms of order two, we have

— F(6(0)) + VO0)b+ %bQ(Q(O)TVVB(O) +VB0))

where W= W) = 5°f/0050" is the nxXpxp array and W= W(8). Clearly,

1&%% = v90).

The next step is to find a useful expression for @(0) by using the normal
estimating equations. In particular, for all b and j=1,---,p

" 2 (0
E(yz“‘b%_fi(e))%e() =0

i=1 7 19)

where v, is the ¢-th element of ¢,. Thus, we can write

3+ 07— £,06)) w_ 0

i=1 J
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Let W,= W,(0)=05"f,/9000" be the pxp Hessian matrix and W,= W,(9).
Taking the derivative of both sides with respect to & we have

3o+ 07— 1,00)) Ed;;(:e(b))e v)
0 of.(0()) v, of (00))
LDl (A M n )

Next, solving for 8(0) gives

3

b0)= (V'V- Ne,W,) Ve,

i=1

where e, =y, — f;(8) = y;,— v, is residual and therefore

Q)

HmL2 =Y — gy Ne, W) 'V e,
b—0 i=1

where

which 1s called the Jacobian leverage matrix.

4. Examples

The data on the metabolism of tetracycline were presented in Bates and Watts
1988) and are reproduced in Table 1. The proposed model is the following:
f(@,0)=03]exp(—0,(z—0,))—exp(—0,(z—6,))].

The least squares estimates of the parameters are Bz: 0.149, 9;: 0.716, 9;: 2.650,
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9A4= 0.412 and o= 0.0448. The diagonal elements f]n and ;Lvi of Jacobian leverage

(3

matrix J and tangent plane leverage matrix H, respectively, are given in Table 1.
In some cases, there is a striking disagreement between the two measures.

<Table 1> Tetracycline data and leverage measures

Li Yi Jii hii
1 0.7 0.960 0.978
2 1.2 0.548 0.617
3 1.4 0.375 0.383
4 1.4 0.353 0.359
6 1.1 0.375 0.421
8 0.8 0.258 0.271
10 06 0.264 0.258
12 05 0.334 0.334
16 0.3 0.360 0.379

5. Remarks

The Jacobian leverage matrix differ from the more standard tangent plane
leverage matrix fl, which 1s observed directly by replacing X in linear models

with V. Equivalently, the tangent plane leverage matrix follows immediately from
the working linear model.

Taking J as our definition of leverage for a nonlinear regression model, we may
consider H as an approximation to it. The appropriateness of this approximation
will depend upon the adequacy of the tangent plane approximation. The difference
between J and H may be thought of as a difference in the matrices used to form
the inner product between columns of matrix V. These matrices, (VV)™! and

(f/TT/*Ee,'Wi)*l, are proportional to the inverse of the expected information and
i=1
the observed information (Kahng, 1995).
The Jacobian leverage matrix is interpreted in the same way as it is in linear
regression. In particular, the i-th diagonal element J, of J is non-zero but it
may be larger than one. Cases with :]% > 1 are called superleverage cases because

the fitted value &L changes faster than the observed value y; (St. Laurent and
Cook, 1992).
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