DOI QR코드

DOI QR Code

A Study on the Middle Step of Rabbit Skeletal Muscle Membrane Contraction by Analog Effects

아날로그에 효과에 의한 토끼 근육 막 수축의 중간단계 연구

  • Kim, Duck-Sool (Department of Biomedical Engineering Tongmyong University)
  • 김덕술 (동명대학교 의용공학과)
  • Published : 2007.03.31

Abstract

X-ray diffraction studies have been made to investigate the effects of binding of ADP, ADP+Vi, ADP+AIF4, $ADP+BeF_3$ on the structure of glycerinated rabbit skeletal muscle in the rigor state. Although these phosphate analogs are known to bind actively cycling myosin heads, it is not clear whether they can bind to the attached heads in the rigor muscle. We have found that these analogs can bind to the myosin heads attached to actin filaments in the rigor state. The present results indicate that (1) bound myosin heads altered their conformation in the proximal end toward the plane perpendicular to the fiber axis when MgADP bound to them, and (2) myosin heads were dissociated substantially (up to 50%) from actin filaments but still remained in the vicinity of actin filaments when MgADP and metallofluorides (AIF4 and BeF3) or vanadate bound to them. We detected new conformations of myosin heads attached to actin filaments when they had MgADP or ADP.Pi analogs. We report here these findings on the effects of MgADP and MgADP+phosphate analogs to the rigor crossbridges.

Keywords

References

  1. K. Wakabayashi and Y. Amemiya, 'Handbook on Synchrotron Radiation.', pp. 597, vol. 4, Progress in X -ray Synchrotron Diffraction Studies of Muscle Contraction, North Holland, Amsterdam (1991)
  2. K. Wakabayashi, H. Tanaka, T. Kobayashi, T. Hamanaka, S. Nishizawa, H. Sugi, and T. Mitsui, Dynamic, Adv. Biophys., 27, 3 (1991).
  3. H. E. Huxley, Science, 164, 1365 (1969)
  4. H. E. Huxley, A. R. Farqi, and M. Brown, J Mol. Biol., 30, 383 (1967) https://doi.org/10.1016/S0022-2836(67)80046-9
  5. H. E. Huxley, R. M. Simmons, A. R. Farqi, and M. Kress, Adv. Exp. Med. BioI., 266, 347 (1988)
  6. H. E. Huxley, A. R. Farqi, M. Kress, J. Bordas, and M. H. J. Koch, J. Mol. Biol., 158, 637 (1982) https://doi.org/10.1016/0022-2836(82)90253-4
  7. Y. Amemiya, K. Wakabayashi, T. Hamanaka, T. Wakabayashi, T. Matsushta, and H. Hashizume, Nucl. Instrum. Methods, 208, 471 (1983) https://doi.org/10.1016/0167-5087(83)91170-5
  8. I. Matsubara and N. Yagi, J Mol. Biol., 208, 359 (1989) https://doi.org/10.1016/0022-2836(89)90396-3
  9. M. A. Bagni, G. Cecchi, F. Colomo, and C. Poggesi, J. Muscle Res. Cell Motil., 11, 371 (1990) https://doi.org/10.1007/BF01739758
  10. H.IIwamoto, T. Kobayashi, Y. Amemiya, and K. Wakabayashi, Biophys, J., 68, 227 (1995) https://doi.org/10.1016/S0006-3495(95)80178-5
  11. M. Kress, H. E. Huxley, A. R. Faruqi, and J. Hendrix, J. Mol. Biol, 188, 325 (1986) https://doi.org/10.1016/0022-2836(86)90158-0
  12. K. Wang, R. McCarter, J. Wright, J. Beverly, and R. Ramirez-Mitchel, Biophys. J. 64, 1161 (1993) https://doi.org/10.1016/S0006-3495(93)81482-6
  13. N. Yagi, J. Muscle Res. Cell Motil., 13, 457 (1992) https://doi.org/10.1007/BF01738040
  14. N. Yagi and I. Matsubara, J. Mol. Biol., 208, 359 (1989) https://doi.org/10.1016/0022-2836(89)90396-3
  15. K. Wakabayashi, H. Saito, T. Kobayashi, Y. Ueno, and H. Tanaka, Photon Factory Act. Rep., 10, 352 (1992)
  16. K. Hirose, T. J. M. Murray, C. Franzini-Armstrong, and Y. E. Goldman, J Cell BioI., 127, 763 (1994) https://doi.org/10.1083/jcb.127.3.763
  17. H. Yagi, S. Takemori, and M. Yamaguchi, J Mol. Biol, 231, (1993)