DOI QR코드

DOI QR Code

A Study on the Sweating Process for High Purification of p-Dioxanone

파라디옥사논의 고순도 정제를 위한 발한(sweating) 공정에 관한 연구

  • Kim, Sung-Il (R&D center, Samchun Pure Chemical Ind. Co., LTD) ;
  • Chun, Suk-Keun (R&D center, Samchun Pure Chemical Ind. Co., LTD) ;
  • Park, Du-Goan (R&D center, Samchun Pure Chemical Ind. Co., LTD) ;
  • Park, Keun-Ho (Department of Chemical engineering, Chang Won National University) ;
  • Park, So-Jin (Department of Chemical and Engineering, Chung Nam National University) ;
  • Kim, Chul-Ung (Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology)
  • 김성일 (삼전순약공업 중앙연구소) ;
  • 전석근 (삼전순약공업 중앙연구소) ;
  • 박두곤 (삼전순약공업 중앙연구소) ;
  • 박근호 (창원대학교 화공시스템공학과) ;
  • 박소진 (충남대학교 화학공학과) ;
  • 김철웅 (한국화학연구원 미세공정기술연구센터)
  • Published : 2007.06.30

Abstract

As an additional high purification method of p-dioxanone monomer for a high molecular weight polymer, the sweating operation of crystalline layer obtained by layered melt crystallization from p-dioxanone-diethylene glycol system was studied. Purity and yield of p-dioxanone crystal depended mainly on the sweating temperature and sweating time. Increasing sweating time and sweating temperature, the purity of p-dioxanone crystal increase, whereas the yield of that decrease, respectively. Through the optimization of sweating operation, p-dioxanone crystal can be upgraded to very high purity over 99.9 % suited to monomer for polymerization.

Keywords

References

  1. Kim, S. I., Kim, C. U. and Park, S. J., Korean Chemical Engineering Research, 43(5), (2005)
  2. Ulrich J., Bierwirth J., Henning S., Separation and Purification Methods, 25(1), 1 (1996) https://doi.org/10.1080/03602549608006625
  3. Wellinghoff G., Winterrnantel K., International Chem. Eng., 34(1), 17 (1994)
  4. Samuel W., Gilbert, AIChE J., 37(8), 1205 (1991) https://doi.org/10.1002/aic.690370810
  5. Konig A. Schreiner A., Powder Technology, 121, 88 (2001) https://doi.org/10.1016/S0032-5910(01)00379-5
  6. Ossipov, P., Int. J. Heat. Mass Transfer, 41, 691 (1998) https://doi.org/10.1016/S0017-9310(97)00199-3
  7. D. L. McKay, Fractional Solidification, Eds. M. Zief and W. R. Wilcox (1967)
  8. Sloan, G. J. and McGhie, A. R., Techniques of Melt Crystallization, New York, John Wiley and Sons (1998)
  9. Mersmann, A., Crystallization Technology of Handbook, Mercel Dekker (1994)
  10. Yang, Ke-Ke, Wang, Xiu.-Li, and Wang, Yu-Zhong, Journal of Macromolecular Science, C42(3), 373 (2002)
  11. Kim, C. U., Kim, S. I., Nam, S. Y. Ko, J. C., Seo, Y. J., and Choi, B. Y, Korean Patent No. 2005-0026679(2005)
  12. Ying Jiang and Conn, North Haven, U.S. Patent No. 5,391,707(1995)
  13. Charles Guthrie Moyers, Charleston, W. Va., U.S. Patent No. 5,675,022(1997)
  14. Kim, K. J., Kim, K. M., Lee, H. J., Kim, J. K., J. Korean Ind. Eng. Chem., 13(5), 428 (2002)
  15. Kim, K. J., Ulrich J., J. of Crystal Growth, 234, 551 (2002) https://doi.org/10.1016/S0022-0248(01)01753-5
  16. Haykawa T., Matsuoka M., Satake K., J. Chem. Eng. Japan, 6(4), 332 (1973) https://doi.org/10.1252/jcej.6.332
  17. Matsuoka M., Ohishi M. Kasama S., J. Chem. Eng. Japan, 19(3), 181 (1986) https://doi.org/10.1252/jcej.19.181
  18. Poschmann M., Ulrich J., J. of Crystal Growth, 167, 248 (1996) https://doi.org/10.1016/0022-0248(96)00236-9
  19. Matsuoka M., Fukuda T., Takagi Y., Takiyama H., J. of Crystal Growth, 166, 1035 (1996) https://doi.org/10.1016/0022-0248(95)00481-5