DOI QR코드

DOI QR Code

경사진 KoFlux 산림유역에서 에디공분산 플럭스 산출에 미치는 좌표회전의 효과

The Effect of Coordinate Rotation on the Eddy Covariance Flux Estimation in a Hilly KoFlux Forest Catchment

  • Yuan, Renmin (Dept. of Atmospheric Sciences, Yonsei Univ.) ;
  • Kang, Min-Seok (Dept. of Atmospheric Sciences, Yonsei Univ.) ;
  • Park, Sung-Bin (Dept. of Atmospheric Sciences, Yonsei Univ.) ;
  • Hong, Jin-Kyu (Lab. for Environmental Physics, Dept. of Crop & Soil Sciences, University of Georgia) ;
  • Lee, Dong-Ho (Dept. of Atmospheric Sciences, Yonsei Univ.) ;
  • Kim, Joon (Dept. of Atmospheric Sciences, Yonsei Univ.)
  • 발행 : 2007.06.30

초록

험준한 산지에 위치한 광릉 KoFlux 슈퍼사이트는 기복이 진 지형과 산골 순환으로 인해 풍속이 약한 것이 특징이다. 따라서 에디 공분산 방법을 이용한 플럭스 관측에 좌표회전이 미치는 효과를 이해하는 것이 필수적이다. 본 논문에서는 세 가지의 직교 좌표 체제 (이중, 삼중 및 planar fit 회전)의 특징을 살펴 보고, 이들을 광릉 슈퍼사이트에서 관측된 플럭스 자료에 적용하였다. 'Planar Fit(PF)' 좌표회전으로부터 유추해 낸 초음파 풍속계의 연직 풍속의 평균 차감은 대략 $\pm0.05ms^{-1}$이었다. 바람이 부는 경우, 이중 회전 $(\bar{v}=\bar{w}=0)$에서 산출된 열, 수증기 및 $CO_2$의 난류 플럭스는 PF 회전에서 나온 결과와 거의 같았다. 그러나 바람이 잔잔한 경우에는 이중 회전이 큰 값의 편의를 나타내었다. 대기 지표층의 중요한 스케일링 모수인 마찰 속도는 좌표 회전 방법의 선택에 따라 더 민감하게 반응하였다.

The Gwangneung KoFlux supersite, located in a rugged mountain region, is characterized by a low wind speed due to a mountain-valley circulation and rolling terrain. Therefore, it is essential to understand the effect of coordinate rotation on flux measurements by the eddy-covariance method. In this paper, we review the properties of three orthogonal coordinate frames (i.e., double, triple, and planar fit rotations) and apply to flux data observed at the Gwangneung supersite. The mean offset of vertical wind speed of sonic anemometer was inferred from the planar fit (PF) coordinate rotation, yielding the diurnal variation of about $\pm0.05ms^{-1}$. Double rotation $(\bar{v}=\bar{w}=0)$ produced virtually the same turbulent fluxes of heat, water, and $CO_2$ as those from the PF rotation under windy conditions. The former, however, resulted in large biases under calm conditions. The friction velocity, an important scaling parameter in the atmospheric surface layer, was more sensitive to the choice of coordinate rotation method.

키워드

참고문헌

  1. Baldocchi, D. D., J. J. Finnigan, K. Wilson, K. T. Paw U, E. Falge, 2000: On measuring net ecosystem exchange over tall vegetation on complex terrain, Boundary Layer Meterorology 96, 257-292 https://doi.org/10.1023/A:1002497616547
  2. Finnigan, J. J., 1999: A Comment on the Paper by Lee (1998): On Micrometeorological Observations of Surface-Air Exchange over Tall Vegetation, Agricultural and Forest Meteorology 97, 55-64 https://doi.org/10.1016/S0168-1923(99)00049-0
  3. Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques-Part II: Averaging and coordinate rotation, Boundary-Layer Meteorology 107, 1-48 https://doi.org/10.1023/A:1021554900225
  4. Finnigan, J. J., 2004: A re-evaluation of long-term flux measurement techniques-Part II: Coordinate systems, Boundary-Layer Meteorology 113, 1-41 https://doi.org/10.1023/B:BOUN.0000037348.64252.45
  5. Kaimal, J. J., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York
  6. Kim, J., D. H. Lee, J. K. Hong, S. K. Kang, S. J. Kim, S. K. Moon, J. H. Lim, Y. H. Son, J. S. Lee, S. H. Kim, N. C. Woo, K. H. Kim, B. Y. Lee, B. L. Lee, and S. Kim, 2007: HydroKorea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea, Ecological Research 21, 881-889 https://doi.org/10.1007/s11284-006-0055-3
  7. Hong, J. and J. Kim, 2002: On processing raw data from micrometeorological field experiments, Korean Journal of Agricultural and Forest Meteorology., 4, 119-126
  8. Hong, J., D. H. Lee, and J. Kim, 2005: Lessons from FIFE on scaling of surface fluxes at Gwangneung forest site, Korean Journal of Agricultural and Forest Meteorology 7, 4-14. (in Korean with English abstract)
  9. Lee, X., and X. Hu, 2002: Forest-air fluxes of carbon, water and energy over non-flat terrain, Boundary-Layer Meteorology 103, 277-301 https://doi.org/10.1023/A:1014508928693
  10. Lee, X., W. Massman, and B. Law, 2004: Handbook of Micrometeorology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  11. McMillen, R. T., 1988: An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain, Boundary- Layer Meteorology 43, 231-245 https://doi.org/10.1007/BF00128405
  12. Paw U, K. T., D. D. Baldocchi, T. P. Meyers, and K. B. Wilson, 2000: Correction of eddy-covariance measurements incorporating both advective effects and density fluxes, Boundary-Layer Meteorology 97, pp. 487-511 https://doi.org/10.1023/A:1002786702909
  13. Tanner, C. B., and G. W. Thurtell, 1969: Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer, Research and Development Tech. Report ECOM 66-G22-F to the US Army Electronics Command, Dept. Soil Science, Univ. of Wisconsin, Madison, WI
  14. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer, Quarterly Journal of Royal Meteorology Society 106, 85-100 https://doi.org/10.1002/qj.49710644707
  15. Wesely, M., 1970: Eddy correlation measurements in the atmospheric surface layer over agricultural crops. Ph. D. Dissertation. University of Wisconsin, Madison, Wisconsin, US
  16. Wilczak, J. M., S. P. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms, Boundary-Layer Meteorology 99, 127-150 https://doi.org/10.1023/A:1018966204465

피인용 문헌

  1. Effects of Different Averaging Operators on the Urban Turbulent Fluxes vol.24, pp.2, 2014, https://doi.org/10.14191/Atmos.2014.24.2.197
  2. Outlier Detection and Replacement for Vertical Wind Speed in the Measurement of Actual Evapotranspiration vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1455
  3. Standardization of KoFlux Eddy-Covariance Data Processing vol.11, pp.1, 2009, https://doi.org/10.5532/KJAFM.2009.11.1.019
  4. Time Variability of Surface-Layer Characteristics over a Mountain Ridge in the Central Himalayas During the Spring Season vol.158, pp.3, 2016, https://doi.org/10.1007/s10546-015-0098-5
  5. Effect of Coordinate Rotation Systems on Calculated Fluxes over a Forest in Complex Terrain: A Comprehensive Comparison vol.156, pp.2, 2015, https://doi.org/10.1007/s10546-015-0027-7
  6. Adapting Tilt Corrections and the Governing Flow Equations for Steep, Fully Three-Dimensional, Mountainous Terrain vol.159, pp.3, 2016, https://doi.org/10.1007/s10546-015-0066-0
  7. Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.831
  8. Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.473
  9. Estimation of the storage and advection effects on H2 O and CO2 exchanges in a hilly KoFlux forest catchment vol.44, pp.1, 2008, https://doi.org/10.1029/2007WR006408
  10. Identifying CO 2 advection on a hill slope using information flow vol.232, 2017, https://doi.org/10.1016/j.agrformet.2016.08.003
  11. Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.366
  12. New gap-filling and partitioning technique for H<sub>2</sub>O eddy fluxes measured over forests vol.15, pp.2, 2018, https://doi.org/10.5194/bg-15-631-2018