DOI QR코드

DOI QR Code

광릉 원두부 소유역에서의 우기 중 지하수 함양률 평가

Estimation of the Groundwater Recharge Rate during a Rainy Season at a Headwater Catchment in Gwangneung, Korea

  • 최인혁 (연세대학교 지구시스템과학과) ;
  • 우남칠 (연세대학교 지구시스템과학과) ;
  • 김수진 (연세대학교 대기과학과/지구환경연구소) ;
  • 문상기 (연세대학교 대기과학과/지구환경연구소) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소)
  • Choi, In-Hyuk (Department of Earth System Sciences, Yonsei University) ;
  • Woo, Nam-Chil (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Su-Jin (Department of Atmospheric Sciences and Global Environment Lab., Yonsei University) ;
  • Moon, Sang-Ki (Department of Atmospheric Sciences and Global Environment Lab., Yonsei University) ;
  • Kim, Joon (Department of Atmospheric Sciences and Global Environment Lab., Yonsei University)
  • 발행 : 2007.06.30

초록

광릉 슈퍼사이트 내 원두부 소유역에서 지하수위변동법, 이온수지법, 수문곡선분리법 등 세가지 방법을 적용하여 지하수 함양률을 평가하고, 방법별 결과들을 비교하였다. 이를 위한 자료는 우기에 해당하는 2005년 6월부터 9월까지 취득하였다. 두 가지 다른 지하수위변동법으로는 각각 25.9%, 23.6%의 지하수 함양률이 산출되었고, 염소를 이용한 이온수지법은 평균 13.4%의 함양률이, 그리고 6개의 수문곡선과 염소 이온자료를 이용한 기저유출 분리법은 평균 14.0%의 순기저유출률이 산출되었다. 장기적으로 지하수 저장량의 변화가 없는 정류상태를 가정하는 이온수지법과 수문곡선 분리법에서 산출된 지하수 함양률이 지하수 함양으로 인해 지하수위의 상승과 저장량의 변화를 고려하는 지하수위변동법에서 산출된 지하수 함양률보다 작게 산정되었다. 따라서 수문순환의 동력학적 특성을 이해하는 측면에서는, 지하수위변동법에 의한 지하수 함양률 평가가 다른 방법들보다 우월함을 보인다.

Groundwater recharge rates were estimated and compared in a headwater catchment at the Gwangneung Supersite using three different methods: water-table fluctuation (WTF), mass balance, and hydrograph separation techniques. Data were obtained during the rainy season from June to September 2005. Two different WTF methods estimated the groundwater recharge rate as 25.9% and 23.6%. The mass balance calculation of chloride ions indicated recharge rates of 13.4% on average. Baseflow separation using chloride ion as a tracer from six storm hydrographs produced a 14.0% net baseflow rate on average. Because of the implicit assumption of a long-term steady state without storage change, recharge rates calculated by mass balance and hydrograph separation were smaller than those done with WTF methods, which include the amount of increased storage due to the water-level rise. Subsequently, the WTF method is superior to others in the estimation of groundwater recharge rate to comprehend the dynamic characteristics of the hydrologic cycle.

키워드

참고문헌

  1. Arnold, J. G., R. S. Muttiah, R. Srinnivasan, and P. M. Allen, 1996: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology 227, 21-40
  2. Bear, J., 1979: Hydraulics of Groundwater. McGraw-Hill
  3. Cho, S. H., S. H. Moon, D. C. Kho, M. Cho, and M. Y. Song, 2005: Hydrograph separation using a chemical tracer (Cl) and estimation of baseflow rate in two small catchments, Yuseong, Daejon. Journal of the Geological Society of Korea 41(3), 427-436
  4. Christophersen, N., and R. P. Hooper, 1992: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resources Research 28, 99-107 https://doi.org/10.1029/91WR02518
  5. Eriksson, E., and V. Khunakasem, 1969: Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. Journal of Hydrology 7, 178-197 https://doi.org/10.1016/0022-1694(69)90055-9
  6. Freeze, R. A., and J. A. Cherry, 1979: Groundwater. Prentice Hall, Englewood Cliffs, New Jersey
  7. Gerhart, J. M., 1986: Groundwater recharge and its effect on nitrate concentrations beneath a manured field site in Pennsylvania. Ground Water 24, 483-489 https://doi.org/10.1111/j.1745-6584.1986.tb01027.x
  8. Goes, B. J. M., 1999: Estimate of shallow groundwater recharge in the Hadejia-Nguru Wetlands, semi-arid northeastern Nigeria. Hydrogeology Journal 7, 294-304 https://doi.org/10.1007/s100400050203
  9. Halford, K. J., and G. C. Mayer, 2000: Problems associated with estimating ground water discharge and recharge from stream-discharge records. Ground Water 38(3), 331-342 https://doi.org/10.1111/j.1745-6584.2000.tb00218.x
  10. Hannula, S. R., K. J. Esposito, J. A. Chermak, D. D. Runnells, D. C. Keith, and L. E. Hall, 2003: Estimating ground water discharge by hydrograph separation. Ground Water 41(3), 368-375 https://doi.org/10.1111/j.1745-6584.2003.tb02606.x
  11. Healy, R. W., and Cook, P. G., 2002: Using groundwater levels to estimate recharge. Hydrogeology Journal 10, 91-109 https://doi.org/10.1007/s10040-001-0178-0
  12. Institute of Hydrology, 1980a: Low Flow Studies. Wallingford, Oxfordshire, United Kingdom, Report No.1
  13. Institute of Hydrology, 1980b: Low Flow Studies. Wallingford, Oxfordshire, United Kingdom, Report No.3
  14. Joerin, C., K. J. Beven, I. Iorgulescu, and A. Musy, 2002: Uncertainty in hydrograph separations based on geochemical mixing models. Journal of Hydrology 255, 90-106 https://doi.org/10.1016/S0022-1694(01)00509-1
  15. Ketchum, J. N., J. J. Donovan, and W. H. Avery, 2000: Recharge characteristics of a phreatic aquifer as determined by storage accumulation. Hydrogeology Journal 8, 579-593 https://doi.org/10.1007/s100400000088
  16. Kim, S. J., 2003: Hydro-biogeochemical study on the sulfur dynamics in a temperature forest catchment. Ph. D. Dissertation. Kyoto University, 41pp
  17. Ladouche, B., A. Probst, D. Viville, S. Idir, D. Baqué, M. Loubet, J.-L. Probst, and T. Bariac, 2001: Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). Journal of Hydrology 242, 255-274 https://doi.org/10.1016/S0022-1694(00)00391-7
  18. Mahlknecht, J., J. F. Schneider, B. J. Merkel, I. N. De León, and S. M. Bernasconi, 2004: Groundwater recharge in a sedimentary basin in semi-arid Mexico, Hydrogeology Journal 12, 511-530 https://doi.org/10.1007/s10040-004-0332-6
  19. Mau, D. P., and T. C. Winter, 1997: Estimating groundwater recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Ground Water 35(2), 291-304 https://doi.org/10.1111/j.1745-6584.1997.tb00086.x
  20. Meinzer, O. E., 1923: The occurrence of groundwater in the United States with a discussion of principles. US Geological Survey Water-Supply Paper 489, 321
  21. Ministry of Agriculture and Forestry, 2004: Development of Groundwater Monitoring and Management System for Agricultural Areas - Final report
  22. Moon, S. K., N. C. Woo, and K. S. Lee, 2004: Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology 292, 198-209 https://doi.org/10.1016/j.jhydrol.2003.12.030
  23. Moore, G. K., 1992: Hydrograph analysis in a fractured rock terrain, Ground Water 30(3), 390-395 https://doi.org/10.1111/j.1745-6584.1992.tb02007.x
  24. MOST, 1999: Geologic Map of Seoul-Namchon - Report, Ministry of Science and Technology, Korea
  25. Pinder, G. F., and J. F. Jones, 1969: Determination of the groundwater component of peak discharge from the chemistry of total runoff. Water Resources Research 5(2), 438-445 https://doi.org/10.1029/WR005i002p00438
  26. Rasmussen, T. C., and G. E. Andreasen, 1959: Hydrologic budget of the Beaver dam Creek Basin, Maryland, US Geological Survey Water-Supply Paper 1472, 106
  27. Sami, K., and D. A. Hughes, 1996: A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-subsurface model. Journal of Hydrology 179, 111-136 https://doi.org/10.1016/0022-1694(95)02843-9
  28. Scanlon, B. R., R. W. Healy, and P. G. Cook, 2002: Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10, 18-39 https://doi.org/10.1007/s10040-001-0176-2
  29. Sharma, M. L., 1988: Recharge estimation from the depthdistribution of environmental chloride in the unsaturated zone-western Australian examples, Estimation of Natural Groundwater Recharge, I. D. Simmers, (Eds.), Reidel Publishing Company, Dordrecht
  30. Szilagyi, J., and M. B. Parlange, 1998: Baseflow separation based on analytical solutions of the Boussinesq equation. Journal of Hydrology 204, 251-260 https://doi.org/10.1016/S0022-1694(97)00132-7
  31. Theis, C. V., 1937: Amount of groundwater recharge in the southern high plains, Transactions of the American Geophysical Union 18, 564. https://doi.org/10.1029/TR018i002p00564
  32. Ting, C. S., T. Kerh, and C. J. Liao, 1998: Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan, Hydrogeology Journal 6, 282-292 https://doi.org/10.1007/s100400050151
  33. Wahl, K. L., and T. L. Wahl, 1988: Effects of regional ground-water level declines on streamflow in the Oklahoma panhandle, Proceedings of the Symposium on Water-Use Data for Water Resources Management, American Water Resources Association, 239-249
  34. Wahl, K. L., and T. L. Wahl, 1995: Determining the flow of Comal springs at New Braunfels, Texas, Proceedings of the Symposium on Texas Water '95, American Society of Civil Engineers, 77-86
  35. WAMIS (Water Management Information System), http:// www.wamis.go.kr

피인용 문헌

  1. Disentangling event-scale hydrologic flow partitioning in mountains of the Korean Peninsula under extreme precipitation vol.538, 2016, https://doi.org/10.1016/j.jhydrol.2016.04.050
  2. Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.065
  3. Insights From a Multi-Method Recharge Estimation Comparison Study pp.0017467X, 2019, https://doi.org/10.1111/gwat.12801