Semantic Scenes Classification of Sports News Video for Sports Genre Analysis

스포츠 장르 분석을 위한 스포츠 뉴스 비디오의 의미적 장면 분류

  • 송미영 (수원여자대학 멀티미디어통신과)
  • Published : 2007.05.30

Abstract

Anchor-person scene detection is of significance for video shot semantic parsing and indexing clues extraction in content-based news video indexing and retrieval system. This paper proposes an efficient algorithm extracting anchor ranges that exist in sports news video for unit structuring of sports news. To detect anchor person scenes, first, anchor person candidate scene is decided by DCT coefficients and motion vector information in the MPEG4 compressed video. Then, from the candidate anchor scenes, image processing method is utilized to classify the news video into anchor-person scenes and non-anchor(sports) scenes. The proposed scheme achieves a mean precision and recall of 98% in the anchor-person scenes detection experiment.

앵커 장면 검출은 내용기반 뉴스 비디오 색인과 검색 시스템에서 비디오 장면의 의미적 파싱과 색인을 추출하는데 중요한 역할을 한다. 이 논문은 스포츠 뉴스의 단위 구조화를 위해서 뉴스 동영상에 존재하는 앵커 구간을 구분해내는 효율적인 알고리즘을 제안한다. 앵커 장면을 검출하기 위해서, 우선 MPEG4 압축 비디오에서 DCT 계수치와 모션 방향성 정보를 이용하여 앵커 후보 장면을 결정한다. 그리고 검출된 후보앵커 장면으로부터 영상처리 방법을 활용하여 뉴스 비디오를 앵커 장면과 비앵커(스포츠) 장면으로 분류한다. 제안된 방법은 앵커 장면 검출 실험에서 평균적으로 98%의 정확도와 재현율을 얻었다.

Keywords