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DECOMPOSITION SERIES AND
SUPRATOPOLOGICAL SERIES
OF NEIGHBORHOOD SPACES

Sang Ho Park

Abstract. In this paper, we will show some relations between
decomposition series {να : α is an ordinal } and supratopologi-

cal series {σαν : α is an ordinal } for a neighborhood structure

ν and the formular σαν = ν(ωα), where ω is the first limit
ordinal.

1. Introduction and Preliminaries

A convergence structure [1] is a correspondence between the fil-
ters on a given set X and the subsets of X which specifies which
filters converge to which points of X. Also, for a given convergence
structure q on a set X, [3] introduced the associated decomposition
series {παq : α is an ordinal }.

A supratopology, [5], is defined to be a collection of subsets of a
set X (called supraopen sets) which contains X and is closed under
arbitrary unions, but, unlike a topology, is not required to be closed
under finite intersections. If (X, τ) is a topological space the collec-
tions of semi-open, preopen, and semi-preopen sets relative to τ each
form supratopologies on X derived from τ .
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In 2002, Kent and Min [4] defined “neighborhood p-stack ν(x)”,
“neighborhood structure ν” on X, which ν(x) ≤ ẋ for all x ∈ X and
the pair (X, ν) as a “neighborhood space”, where ẋ denotes the fixed
ultrafilter generated by {x}.

In order to develop the theory of neighborhood spaces, it is neces-
sary to introduce a new vehicle “p-stack” for describing convergence.
Given a set X, a collection C of subsets of X is called a stack if A ∈ C
whenever B ∈ C and B ⊆ A; a stack which is closed under finite in-
tersections and does not contain the empty set is called a filter. The
concept that we need is intermediate in generality between a stack
and a filter.

Definition 1.1. ([4]). A stack H on a set X is called a p-stack
if it satisfies the following condition:

(p) A,B ∈ H implies A ∩ B ̸= ∅.

Condition (p) is called the pairwise intersection property (P.I.P.)
which is strictly weaker than the well-known finite intersection prop-
erty (F.I.P.). A collection B of subsets of X with the P.I.P. is called
a p-stack base. For any collection B, we denote by ⟨B⟩ = {A ⊆ X :
∃B ∈ B such that B ⊆ A} the stack generated by B, and if B is
p-stack base, then ⟨B⟩ is a p-stack. If B is a p-stack base with the
F.I.P., then B is a filter subbase, and in this case B generates the
filter [B] = {A ⊆ X : ∃B1, · · · , Bn ∈ B such that ∩n

i=1Bi ⊆ A}.

Let pS(X) (respectively, S(X) F (X)) denote the set of all p-
stacks (respectively, stacks, filters) on X, partially ordered by in-
clusion. The maximal elements in pS(X) (respectively, F (X)) are
called ultrapstacks (respectively, ultrafilters). One may easily ver-
ify that every ultrafilter is an ultrapstack, and (via Zorn’s Lemma)
that every p-stack (respectively, filter) is contained in an ultrapstack
(respectively, ultrafilter).



Decomposition Series and Supratopological Series 113

Definition 1.2.. ([4]). Let X be a set, and let ν ⊆ pS(X) be
given by ν = {ν(x) : x ∈ X}, where ν(x) ⊆ ẋ for all x ∈ X and
ẋ is the ultrapstack containing {x}. Then ν is called a neighborhood
structure on X, ν(x) is called the ν-neighborhood stack at x, and
(X, ν) is called a neighborhood space. A p-stack H on X ν-converges
to x (written H ν−→ x) if ν(x) ⊆ H. For convenience, “neighborhood”
will be henceforth abbreviated by “nbd.”.

Let N(X) be the set of all nbd. structures on X, partially ordered
as follows: ν ≤ µ ⇔ ν(x) ⊆ µ(x), ( denoted by ν(x) ≤ µ(x)), for
all x ∈ X (in which case ν is coarser than µ and µ is finer than ν).
Then N(X) is a complete lattice [4].

Proposition 1.3. ([4]). If A = {νi : i ∈ J} ⊆ N(X), ν =
infN(X) A, and µ = supN(X) A, then ν(x) = ∩{νi(x) : i ∈ J} and

µ(x) = ∪{νi(x) : i ∈ J}.

If (X, ν) is a nbd. space and A ⊆ X, let

Iν(A) = {x ∈ A : A ∈ ν(x)};
Clν(A) = {x ∈ X : A ∩ V ̸= ∅, forall V ∈ ν(x)}.

Proposition 1.4. ([4]). If (X, ν) is a nbd. space and A ⊆ X,
then:

(1) Iν(A) = {x ∈ A : A ∈ H, for every p-stack H ν−→ x};
(2) Clν(A) = X \ Iν(X \ A);
(3) Clν(A) = {x ∈ X : ∃H ∈ pS(X) such that H ν−→ x and

A ∈ H}.

In 1997 and 1999, [6] and [7] showed comparing properties of de-
composition series with those of the topological series, which is re-
lated in convergence space. In this paper, we shall change some
results of [2], [3], [6] and [7] related to convergence spaces to nbd.
spaces and other sources using more modern notation and terminol-
ogy. We are mainly interested in changing such properties to nbd.
spaces.
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2. Decomposition Series in N(X)

Let (X, ν) be a nbd. space. Given an ordinal number α ≥ 1, let
Iα
ν and Clαν denote the αth iterations of interior operator and closure

operator for ν, respectively. For A ⊆ X, we inductively define:

Iα
ν (A) =

{
Iν(Iα−1

ν (A)), if α − 1 exists;
∩β<αIβ

ν (A), if α is a limit ordinal.

Clαν (A) =
{

Clν(Clα−1
ν (A)), if α − 1 exists;

∪β<α(Clβν (A)), if α is a limit ordinal,

where I0
ν (A) = A and Cl0ν(A) = A.

For any ordinal α and G ∈ pS(X), we define the αth ν nbd.
p-stack να(G) and the αth closure p-stack Clαν (G), respectively, as
follows:

να(G) = {A ⊆ X : Iα
ν (A) ∈ G};

Clαν (G) = ⟨{Clαν (G) : G ∈ G}⟩.

While, we know that ν(ẋ) = ν(x) and if α < β, then νβ(G) ≤
να(G) ≤ G.

Let {Hi : i ∈ J} ⊆ pS(X). Then we can show that ∩i∈JHi ∈
pS(X) and ν(∩i∈JHi) = ∩i∈Jν(Hi). Also, if Hi’s are not disjoint,
then ∪i∈JHi ∈ pS(X) and ν(∪i∈JHi) = ∪i∈Jν(Hi).

Also we know that if α < β, then νβ(G) ≤ να(G) ≤ G ≤ Iα
ν (G) ≤

Iβ
ν (G).

Proposition 2.1. ([4]). For every ordinal α and A ⊆ X, X \
Clαν (A) = Iα

ν (X \ A).

If (X, ν) is a nbd. space and α ≥ 1, let να be the nbd. structure
on X defined by A ∈ να(x) ⇐⇒ x ∈ Iα

ν (A). Then we know that
β < α implies Iα

ν (A) ⊆ Iβ
ν (A), so να ≤ νβ .
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Proposition 2.2. For any ordinals α, β, x ∈ X and A ⊆ X,
(1) Iα+β

ν (A) = Iβ
ν (Iα

ν (A));
(2) να+β(x) = να(νβ(x)).

Proof. (1) Let α be a fixed ordinal. We use transfinite induction
on β. If β = 1, Iα+1

ν = Iν(Iα
ν (A)) follows by definition. Next, let β

be an arbitrary ordinal.
Case 1. ∃β′ such that β′ + 1 = β. By the induction hypothesis

Iα+β′

ν (A) = Iβ′

ν (Iα
ν (A)), and so

Iα+β
ν (A) = Iα+β′+1

ν (A) = Iν(Iα+β′

ν (A))

= Iν(Iβ′

ν (Iα
ν (A))) = Iβ′+1

ν (Iα
ν (A))) = Iβ

ν (Iα
ν (A)).

Case 2. β is a limit ordinal.

Iα+β
ν (A) = ∩γ<βIα+γ

ν (A) = ∩γ<βIγ
ν (Iα

ν (A)) = Iβ
ν (Iα

ν (A)).

(2) A ∈ να+β(x) ⇐⇒ x ∈ Iα+β
ν (A) ⇐⇒ x ∈ Iβ

ν (Iα
ν (A)) ⇐⇒

Iα
ν (A) ∈ νβ(x) ⇐⇒ A ∈ να(νβ(x)). ¤

Corollary 2.3. For any ordinals α, β, and F ∈ S(X),

να+β(F) = να(νβ(F)).

Definition 2.4. A descending chain {να : α ≥ 1} of nbd. struc-
tures on X is called a decomposition series of (X, ν), where ν1 = ν.
Also, if ν(ν(x)) = ν(x) for each x ∈ X, ν is called a supratopological
nbd. structure.

Proposition 2.5. ([4]). If A = {νi : i ∈ J} ⊆ N(X) and each
νi ∈ A is supratopological, so is supN(X) A.

Let σν = {A ⊆ X : Iν(A) = A} and σν(x) = {A ⊆ X : ∃U ∈ σν

s.t. x ∈ U ⊆ A}. Then σν is a supratopology in the sense of [5]
and σν(x) = ⟨{A ⊆ X : x ∈ Iν(A) = A, }⟩, so σν is the finest
supratopological nbd. structure on X coarser than ν. ([4]). Also,
we can easily show that σν = σνα for each ordinal α ≥ 1 and

ν ≥ ν2 ≥ ν3 ≥ · · · · · · ≥ νω ≥ · · · · · · ≥ σν,

where ω is the first limit ordinal.
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3. µ-Supratopological Nbd. Spaces and Supratopological
Series

In this section, we shall define “µ-supratopological nbd. struc-
tures” and “supratopological series”, and change some results of [6]
related to convergence spaces to nbd. spaces.

Henceforth ν, µ and η mean nbd. structures on X and ω is the
first limit ordinal. Also, (X, ν) means a nbd. space equipped with a
second nbd.structure µ.

Proposition 3.1. Let (X, ν) be a nbd. space and x ∈ X. Then
ν(x) = µ(ν(x)) iff ν(x) = Iµ(ν(x)).

Proof. We have already known µ(ν(x)) ≤ ν(x) ≤ Iµ(ν(x)).
( =⇒ ) Let A ∈ Iµ(ν(x)). Then there exists B ∈ ν(x) = µ(ν(x))

such that Iµ(B) ⊆ A, so Iµ(B) ∈ ν(x), and hence A ∈ ν(x). Conse-
quently ν(x) = Iµ(ν(x)).

( ⇐= ) Let A ∈ ν(x). Then Iµ(A) ∈ Iµ(ν(x)) = ν(x), so A ∈
µ(ν(x)), and hence ν(x) = µ(ν(x)). ¤

Definition 3.2.. A nbd. space (X, ν) is µ-supratopological (or ν
is µ-supratopological) iff ν(x) = µ(ν(x)) for all x ∈ X. In particular,
if (X, ν) is ν-supratopological, then (X, ν) is supratopological (or ν
is supratopological) .

Proposition 3.3. (X, ν) is µ-supratopological iff µ(H) ν−→ x,

whenever a p-stack H ν−→ x.

Proof. ( =⇒ ) Let H ν−→ x. Then ν(x) ≤ H, so ν(x) = µ(ν(x)) ≤
µ(H), and hence µ(H) ν−→ x.

( ⇐= ) Since ν(x) ν−→ x, by the assumption, µ(ν(x)) ν−→ x,
so µ(ν(x)) ≥ ν(x), and hence µ(ν(x)) = ν(x). Thus (X, ν) is µ-
supratopological. ¤

Proposition 3.4. If (X, ν) is µ-supratopological and µ ≤ η, then
(X, ν) is η-supratopological.
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Proof. Since (X, ν) is µ-supratopological and µ ≤ η, ν(x) =
µ(ν(x)) ≤ η(ν(x)). Thus, ν(x) = η(ν(x)), so (X, ν) is η-supratopolo-
gical. ¤

Corollary 3.5. (1) If (X, ν) is µ-supratopological and µ ≤ ν,
then (X, ν) is supratopological.

(2) If (X, ν) is supratopological and ν ≤ µ, then (X, ν) is µ-
supratopological.

Theorem 3.6. Let ω be the first limit ordinal. If (X, ν) is µ-
supratopological, then:

(1) ν ≤ µω ≤ µ,
(2) (X,σν) is µ-supratopological.

Proof. Since (X, ν) is µ-supratopological, ν(x) = µ(ν(x)).
(1) Claim: ν(x) ≤ µω(x). Let V ∈ ν(x). Then V ∈ µ(ν(x)),

so Iµ(V ) ∈ ν(x). By Induction, In
µ (V ) ∈ ν(x) for all n < ω, so

x ∈ In
µ (V ) for all n < ω. Thus x ∈ ∩n<ωIn

µ (V ) = Iω
µ (V ), and hence

V ∈ µω(x). Thus the Claim is proved, so ν ≤ µω. Also µω ≤ µ is
obvious.

(2) Since (X,σν) is σν-supratopological and σν ≤ ν ≤ µ, by
Proposition 3.4, (X,σν) is µ-supratopological. ¤

Definition 3.7. For ν, µ ∈ N(X), σµν is defined by

σµν = supN(X){η : η ≤ ν, η is µ-supratopological}.

By [4],

(σµν)(x) = ∪{η(x) : η ≤ ν, η is µ-supratopological}, ∀x ∈ X.

Proposition 3.8. Let ν, µ ∈ N(X) and F ∈ pS(X). If there

exist G ν−→ x and n ∈ N such that F ≥ µn(G), then F σµν−−−→ x.
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Proof. Suppose that there exist n ∈ N and G ν−→ x such that
µn(G) ≤ F . Since G ν−→ x, G η−→ x for any µ-supratopological
nbd. structure η ≤ ν. Since η is µ-supratopological, µn(G)

η−→ x,
so F η−→ x, and hence η(x) ≤ F for any µ-supratopological nbd.
structure η ≤ ν. Thus ∪{η(x) : η is µ-supratopological, η ≤ ν} =
σµν(x) ≤ F . Consequently, F σµν−−−→ x. ¤

Proposition 3.9. Let ν, µ ∈ N(X) and Λ be a set of µ-supra-
topological nbd. structures on X. Then

s = sup
N(X)

Λ and s = infN(X)Λ

are µ-supratopological.

Proof. Let Λ = {νi : i ∈ J} ⊆ N(X) and x ∈ X. By Propo-
sition 1.3, we know that s(x) = ∪i∈Jνi(x) and d(x) = ∩i∈Jνi(x).
Since νi is µ-supratopological, µ(νi(x)) = νi(x). Thus, µ(s(x)) =
µ(∪i∈Jνi(x)) = ∪i∈Jµ(νi(x)) = ∪i∈Jνi(x) = s(x) and µ(d(x)) =
µ(∩i∈Jνi(x)) = ∩i∈Jµ(νi(x)) = ∩i∈Jνi(x) = d(x). Therefore, both s
and d are µ-supratopological. ¤

Corollary 3.10. For ν, µ ∈ N(X) on X, (X,σµν) is µ-supra-
topological, and so σµν is the finest µ-supratopological nbd. struc-
ture on X coarser than ν.

Definition 3.11. Let ν ∈ N(X) and α ≥ 0 ordinal number.
The supratopological series for ν is the descending ordinal sequence
{σαν} on X defined recursively as follows:

σ0ν = ν
σ1ν =supN(X){η : η is ν-supratopological};
σ2ν =supN(X){η : η is σ1ν-supratopological};
σ3ν =supN(X){η : η is σ2ν-supratopological};

:
:

σαν =supN(X){η : η is σα′ν-supratopological}, if α = α′ +1;
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σαν =infN(X){σβν : β < α}, if α ia a limit ordinal.

By Propositions 3.4, 3.9 and Corollary 3.10, we know that σβν is
ν-supratoplogical for any ordinal β ≥ 1, σ1ν = σνν, σ2ν = σσ1νν =
σσννν, · · · , etc., and

ν ≥ σ1ν ≥ σ2ν ≥ σ3ν ≥ · · · · · · ≥ σων ≥ · · · · · · .

4. Decomposition Series and Supratopological Series of
Nbd. Spaces

In this section, for given nbd. structure ν on X, we will show
relations between decomposition series and supratopological series
of ν.

Definition 4.1. For ν ∈ N(X), there exists ν̃ which is the finest
ν-supratopological nbd. structure on X, that is,

ν̃ = supN(X){η : η is ν-supratopological},
and by [4],

ν̃(x) = ∪{η(x) : η is ν-supratopological}, ∀x ∈ X.

Proposition 4.2. If G ν−→ x, then νn+1(x) ≤ νn(G), where n <
ω.

Proof. V ∈ νn+1(x) =⇒ x ∈ In+1
ν (V ) =⇒ x ∈ Iν(In

ν (V )) =⇒
In
ν (V ) ∈ ν(x) =⇒ In

ν (V ) ∈ G, since G ν−→ x =⇒ G ≥ ν(x). Thus
V ∈ νn(G). ¤

Proposition 4.3. ν̃ = σ1ν.

Proof. It follows from Theorem 3.6, Definition 3.7, Definition 3.11
and Definition 4.1. ¤

Let α and β be any ordinals, and ω the first(least) limit ordinal,
and Ω be the first(least) uncountable limit ordinal. Then recall that
α + Ω = Ω for any countable ordinal α, and α + β = β iff β ≥ α · ω.
By using this fact, we obtain the following.
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Proposition 4.4. (1) If α + β = β, then (X, νβ) is να-supra-
topological.

(2) If (X,µ) is να-supratopological and νβ-supratopological, then
(X,µ) is να+β-supratopological.

(3) (X, νω) is ν-supratopological and so νn-supratopological for
each ordinal n < ω.

(4) (X, νω2
) is νω-supratopological and so νω·n-supratopological

for each ordinal n < ω.
(5) (X, νΩ) is να-supratopological for each countable ordinal α.

(6) If 0 < α < β, then (X, νωβ

) is νωα

-supratopological.

Proof. (1)-(4) These are obvious by Proposition 2.2 (2).
(5) It follows from α + Ω = Ω for each countable ordinal α.
(6) Let 0 < α < β. Then α + 1 ≤ β and so ωα · ω = ωα+1 ≤ ωβ .

Thus ωα + ωβ = ωβ . ¤

Recall that for ν ∈ N(X), να(x) is the nbd. p-stack for να, the
αth term in the decomposition series for ν and the first term in the
supratoplogical series for ν is σ1ν = ν̃.

Also σ1ν is the finest ν-supratopological nbd. structure on X and
the lower ν-supratopological modification of ν, since σ1ν ≤ ν.

While, by Theorem 3.6, if (X,µ) is ν-supratopological, then µ ≤ ν.
Thus, if ν < µ, then (X,µ) is not ν-supratopological. This implies ν
has no upper ν-supratopological modification unless ν is supratopo-
logical. We next show that that σ2ν is related to σ1ν exactly as σ1ν is
related to ν. Note that the lower σ1ν-supratopological modification
of σ1ν is σ̃1ν defined by:

σ̃1ν = supN(X){η : η is σ1ν-supratopological},

Proposition 4.5. For any ν ∈ N(X) and the first limit ordinal
ω,

(1) ν̃ = νω;
(2) σ2ν = σ̃1ν;
(3) more generally, σαν = σ̃α′ν for α = α′ + 1.
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Proof. (1) Since νω is ν-supratopological, ν̃ ≥ νω. By Proposition
4.3, ν̃ = σ1ν. Since (X,σ1ν) is ν-supratopological, by Theorem 3.6,
σ1ν ≤ νω, Thus ν̃ = νω.

(2) Note that σ2ν = σσ1νν and σ̃1ν = σσ1ν(σ1ν).
Since σ1ν ≤ ν, by the definitions, σ2ν ≥ σ̃1ν. While, since σ2ν is

σ1ν-supratopological, σ2ν ≤ σ̃1ν. Thus σ2ν = σ̃1ν.
(3) The proof is equal to replace σ2ν and σ1ν by σαν and σα′ν,

respectively, in the proof of (2). ¤

Proposition 4.6. σ1ν = νω and σαν = νωα

for a non-limit
ordinal α, where νωα

means ν(ωα)

Proof. The first equality follows from the Proposition 4.3 and 4.5.
The second equality is proved by the induction hypothesis. Suppose
that σα′ν = νωα′

for α = α′ + 1. Then σαν = σ̃α′ν = (σα′ν)ω =
(νωα′

)ω = νωα′
·ω = νωα′+1

= νωα

. ¤

Proposition 4.7. If α is a limit ordinal, να(x) = ∩β<ανβ(x).

Proof. A ∈ να(x) ⇐⇒ x ∈ Iα
ν (A) = ∩β<αIβ

ν (A) ⇐⇒ x ∈
Iβ
ν (A), ∀β < α ⇐⇒ A ∈ νβ(x), ∀β < α ⇐⇒ A ∈ ∩β<ανβ(x). ¤

Proposition 4.8. If α is a limit ordinal, then σαν = νωα

.

Proof. Recall that Definition 3.7, (σαν)(x) = ∩{(σβν((x) : β <
α}, for all x ∈ X. We will used the induction hypothesis. Assume
that σβν = νωβ

for β < α. Then (σαν)(x) = ∩{(σβν)(x) : β < α} =
∩β<ανωβ

(x) = νωα

(x). ¤

Let lDν be the length of decomposition series and lT ν the supratopo-
logical series for ν ∈ N(X), defined by:

lDν=inf{λ : λ is an ordinal such that νλ = νλ+1};
lT ν =inf{λ : λ is an ordinal such that σλν = σλ+1ν}.

Then we know that lDν=inf{λ : λ is an ordinal such that Iλ
ν (A) =

Iλ+1
ν (A), ∀A ⊆ X}=inf{λ : λ is an ordinal such that νλ = σν}.

Finally, we obtain the following relation between them.
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Proposition 4.9. For ν ∈ N(X) and an ordinal α,
(1) if lT ν ≤ α, then σαν = σν;
(2) if lT ν ≤ α, then lDν ≤ ωα.

Proof. (1) Let λ = lT ν. Then σλν = σλ+1ν = σν. Since λ ≤ α,
σλν ≥ σαν ≥ σν. Thus σαν = σν.

(2) Since lT ν ≤ α, σαν = νωα

= σν. Thus lDν ≤ ωα. ¤
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