COMPUTATIONAL METHOD TO CHARACTERIZE S_{3}-ALGEBRAS

Farhat Nisar and Shaban Ali Bhatti

Abstract

In this paper we give a concrete computational method to characterize S_{3}-algebras.

1. Introduction

In [10] K. Iseki introduced the notion of BCI-algebra and establish some of its properties. Onwards so many eminent researchers contributed a lot to the development of the discipline. S.K. Goel [4] calculated the number of BCI-algebras of order 3 and partially BCIalgebras of order 4. In [2] S.A. Bhatti, M.A. Chaudhry and A.H. Zaidi calculated proper BCI-algebras of order 5 up to isomorphism and posed an open problem stated as follows:

How many proper BCI-algebras of order n exist?
Almost 14 years have gone, this problem is still unsolved. In [1] S.A. Bhatti, M.A. Chaudhry and B. Ahmad classified BCI-algebras into $S_{i^{-}}$ algebras, $\mathrm{i}=1,2,3,4$ and investigated some properties of S_{3}-algebras and S_{4}-algebras. S_{4}-algebras coincide with abelian groups and hence their characterization falls in the area of group theory and is answered there at. An S_{3}-algebras is a type of proper BCI-algebra. We answer the problem completely in it as follows:
"Let X be a S_{3}-algebra of order n with $o(M)=m$, then number of S_{3}-algebras is LR , where $\mathrm{L}=$ number of BCK-algebras of order m and $\mathrm{R}=$ number of distinct p -semisimple BCI-algebras of order $\mathrm{n}-\mathrm{m}+1$."

Received Semtember 13, 2006. Revised March 23, 2007.
2000 Mathematics Subject Classification: 03G25, 06F35.
Key words and phrases: BCK-algebra, BCI-algebra, S_{3}-algebra.

2. Preliminaries

Definition 1 ([10]). A BCI-algebra X is an abstract algebra $(X, *, o)$ of type $(2,0)$, where ${ }^{*}$ is a binary operation, o is a constant which is the smallest element in X, satisfying the following conditions; for all $x, y, z \in X$,
$1((x * y) *(x * z)) *(z * y)=o$
$2(x *(x * y)) * y=o$
$3 x * x=o$
$4 x * y=o=y * x \Rightarrow x=y$
where $x * y=o \Leftrightarrow x \leq y$.
If $o * x=o$ holds for all $x \in X$, then X is a BCK-algebra [9]. Moreover, the following properties hold in every BCK/BCI-algebra ([10]):

$$
\begin{aligned}
& 5 x * o=x \\
& 6(x * y) * z=(x * z) * y
\end{aligned}
$$

In a BCI-algebra X, the set $M=\{x \in X: o * x=o\}$ is called the BCK-part of X. A BCI-algebra X is called proper if $X-M \neq \phi$. In a BCI-algebra $X, X-M=\{x \in X: o * x \neq o\}$ is known as the pure BCI-part of X.

7 Let X be a BCI-algebra. If $M=o$, then X is called a psemisimple BCI-algebra [11].
8 Let X be a p-semisimple BCI-algebra. If we define $x+y=$ $x *(o * y)$, then $(X,+, o)$ is an abelian group $[3,11]$.

Definition 2 ([1]). Let X be a BCI-algebra, for $x, y \in X, x, y$ are said to be comparable if $x \leq y$ or $y \leq x$. Similarly in BCK-algebras, if $x * y=o$ or $y * x=o$, the x and y are comparable.

Definition 3 ([1]). An element $x_{o} \in X$ is said to be an initial element in X, if $x \leq x_{o} \Rightarrow x=x_{o}$. Obviously o is an initial element.

Definition 4 ([1]). Let I_{x} denote the set of all initial elements of X . We call it the center of X. The reason for calling I_{x} as the center of X is that each branch (defined below) originates from a unique point of this subset. The cardinality of the center is the same as that as the set of branches of X.

Definition 5 ([1]). Let X be a BCI-algebra with I_{x} as its center. Let $x_{o} \in I_{x}$, then the set $A\left(x_{o}\right)=\left\{x \in X: x_{o} * x=o\right\}$. $A\left(x_{o}\right)$ is known as the branch of X determined by x_{o}. Each branch $A\left(x_{o}\right)$ is nonempty because by property (3), $x_{o} * x_{o}=o \Rightarrow x_{o} \in A\left(x_{o}\right)$.

We note that $A\left(x_{o}\right)$ consists of all those elements of X which succeed x_{o}. If $A\left(x_{o}\right)=\left\{x_{o}\right\}$, then $A\left(x_{o}\right)$, the branch determined by x_{o}, is known as a uniary comparable.

Definition 6 ([1]). A proper BCI-algebra X with $M \neq o$, is S_{3} -algebra if each branch $A\left(x_{o}\right)$ in $X-M$ is uniary comparable i.e for all $x \in X-M, A(x)=\{x\}$.

9 Let X be a S_{3}-algebra with M as its BCK-part. Then for $x, y \in$ $M, z \in X-M, x * z=y * z[5]$.
10 Let X be a S_{3}-algebra with M as its BCK-part. Then $G=$ $\{o\} \cup(X-M)$ is p-semisimple [5].
11 Let X be a S_{3}-algebra with M as its BCK-part. Then for $x \in M$, $y \in X-M, y * x=y[1]$.

Definition 7 ([6]). Let X be a BCI-algebra. An element $x_{o} \in X$ is said to be a Semi-neutral element in X if and only if for all $x \neq x_{o}$, $x * x_{o}=x$ and $x_{o} * x=x_{o}$.

Moreover in [6], we show that the set of all Semi-neutral elements is denoted as $S(X)$ and is known as the Semi-neutral part of the BCKalgebra X. Obviously $S(X)$ is nonempty, because X is a BCK-algebra, therefore $o * x=o$ and $x * o=x$. So, $o \in S(X)$.

Note that any nonzero element x of a BCK-algebra X such that $x \leq y$ for some $y \in X$ (or $y \leq x$ for some $y(\neq o) \in X$ can not be a semi-neutral element of X.

Definition 8 ([6]). A BCK-algebra X is said to be a Semi-neutral BCK-algebra if it satisfies for all $x, y \in X, x \neq y \Rightarrow x * y=x$.

12 If X is a Semi-neutral BCK-algebra of finite order then X is unique.

Proposition 1. A p-semisimple BCI-algebra of order n is unique if n is not divisible by the square of any prime number.

Proof. Let X be a p-semisimple BCI-algebra of order n such that n is not divisible by the square of any prime number. P-semisimple BCI-algebra coincide with an abelian group (see [3, 11]). It is known that there is a unique abelian group (upto isomorphism) of order n if and only if the order n is not divisible by the square of any prime number (see [8], chapter 11, page 219, Ex. 11, part (f), also see page A15). Thus it follows that X is unique.

Proposition 2. Let X be a S_{3}-algebra with M as its BCK-part. Then for $x \in M, z \neq o, z \in G=\{o\} \bigcup(X-M)$,
(i) $x * z=o * z$;
(ii) $z * x=z$.

Proof. Follows from (9).
Follows from (11).
Theorem 1. Let X be a S_{3}-algebra of order n with $o(M)=m$, then number of S_{3}-algebras is $L R$, where $L=$ number of BCK-algebras of order m and $R=$ number of distinct p-semisimple BCI-algebras of order $n-m+1$.

Proof. Let X be a S_{3}-algebra with $o(X)=n$ and $o(M)=m$. Since $o(X)=n$ and $o(M)=m$, therefore $o(X-M)=n-m$. So, $o(G)=o(\{o\} \bigcup(X-M))=n-m+1$. Without any loss of generality, we take $M=\left\{x_{1}=o, x_{2}, \ldots, x_{m}\right\}$ and $G=\left\{x_{1}=o, x_{m+1}, \ldots ., x_{n}\right\}$. Because of proposition 2, for each $x_{r} \in M$ and $x_{t} \neq o, x_{t} \in G$,

$$
\begin{equation*}
x_{t} * x_{r}=x_{t} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{r} * x_{t}=o * x_{t} \tag{2}
\end{equation*}
$$

for $r=1$ to m and $t=m+1$ to n.
From equation (1), it follows that the entries in the $(m+2)^{\text {th }}$ to $(n+1)^{t h}$ cells of the $3^{\text {rd }}$ to $(m+1)^{\text {th }}$ columns are the same as in $(m+2)^{t h}$ to $(n+1)^{t h}$ cells of the first column in the multiplication table 1 (given below) representing such S_{3}-algebra of order n.

Further from equation (2), it follows that the entries in the $(m+2)^{\text {th }}$ to $(n+1)^{\text {th }}$ cells of the $3^{r d}$ to $(m+1)^{\text {th }}$ rows are the same as in $(m+2)^{\text {th }}$
to $(n+1)^{\text {th }}$ cells of the 2 nd row in the multiplication table 1 (given below) representing such S_{3}-algebra of order n.

Since M is the BCK-part of S_{3}-algebra, therefore for each $x_{r} \in M$,

$$
\begin{equation*}
o * x_{r}=o \tag{3}
\end{equation*}
$$

for $r=1$ to m.
Now using the properties (3), (5) and equations (1)-(3), the multiplication table representing such S_{3}-algebra of order n is shown as follows:

Table 1

$*$	о	x_{2}	x_{3}	--	x_{m}	x_{m+1}	--	x_{n-1}	x_{n}
о	о	о	o	--	o	$o * x_{m+1}=? ?$	--	$o * x_{n-1}=? ?$	$o * x_{n}=? ?$
x_{2}	x_{2}	о	$?$	--	$?$	- do-	--	- do-	-do-
x_{3}	x_{3}	$?$	o	--	$?$	- do-	--	- do-	-do-
--	--	$?$	$?$	--	$?$	--	--	- do-	- do-
x_{m}	x_{m}	$?$	$?$	--	o	- do-	--	- do-	- do-
x_{m+1}	x_{m+1}	x_{m+1}	x_{m+1}	--	x_{m+1}	o	--	$? ?$	$? ?$
--	--	--	--	--	--	--	--	$? ?$	$? ?$
x_{n-1}	x_{n-1}	x_{n-1}	x_{n-1}	--	x_{n-1}	$? ?$	--	$? ?$	$? ?$
x_{n}	x_{n}	x_{n}	x_{n}	--	x_{n}	$? ?$	--	$? ?$	$? ?$

In the above multiplication table the double dashed columns represent the missing $5^{\text {th }}$ to $m^{\text {th }}$ and $(m+3)^{\text {th }}$ to $(n-1)^{\text {th }}$ columns and the the double dashed rows represent the missing $5^{\text {th }}$ to $m^{\text {th }}$ and $(m+3)^{\text {th }}$ to $(n-1)^{t h}$ rows. The cells for which the values to be computed are denoted as ? and ??, where ? denotes $\mathrm{x}^{*} \mathrm{y}$ such that $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and ?? denotes $x^{*} y$ such that $x, y \in G$

By (10) G is a p-semisimple BCI-algebra. Because of (8) a psemisimple algebra coincide with an abelian group and therefore the number of p -semisimple algebras (up to isomorphism) of order $\mathrm{n}-\mathrm{m}+1$ is equal to the number of abelian groups (up to isomorphism) of order $\mathrm{n}-\mathrm{m}+1$. We are given that this number is R . Thus there are R multiplication tables representing such p -semisimple algebra G of order $\mathrm{n}-\mathrm{m}+1$. Hence the blank cells filled with ?? of multiplication table 1 can be filled in R distinct ways with the entries from the corresponding cells of R multiplication tables representing G respectively. So, we get R multiplication tables representing S_{3}-algebras of order n with remaining blank cells filled with ?.

Further we are given that there are L distinct BCK-algebras of order m . Thus there are L Iseki tables representing BCK-algebras order m .

Hence the blank cells filled with ? of any of R multiplication tables representing S_{3}-algebras of order n can be filled in L distinct ways with the entries from the corresponding cells of L Iseki tables respectively. Hence it follows that there are LR distinct S_{3}-algebras of order n .

Corollary 1. If the BCK-part M of a finite S_{3}-algebra X is semineutral and $o(G=\{o\} \bigcup(X-M))$ is not divisible by the square of any prime number, then X is unique.

Proof. Let X be a S_{3}-algebra with M as its BCK-part. Since the BCK-part M is semi neutral BCK-algebra therefore by (12), it is unique. It is given that $o(G=\{o\} \bigcup(X-M)))$ is not divisible by the square of any prime number. By (10) G is a p-semisimple BCIalgebra and by proposition $1, \mathrm{G}$ is unique. Thus it follows that $\mathrm{L}=1$ and $\mathrm{R}=1$. Hence $\mathrm{LR}=1$ which shows that X is unique.

Example 1. Let $X=\{o, a, b, c, d, e, f, g\}$ be a S_{3}-algebra of order 8 with $M=\{o, a\}$ as its BCK-part. Then the BCI-part $X-M=$ $\{b, c, d, e, f\}$. Thus, it follows $o(M)=2$ and $o(X-M)=6$ and $o(G)=o(\{o\} \bigcup\{X-M))=7$. By lemma (10) G is a p-semisimple BCI-algebra. Since, order of G is not divisible by the square of any prime number therefore by proposition $1, \mathrm{G}$ is unique. Thus it follows that $\mathrm{R}=1$. Since a BCK-algebra of order 2 is a Semi-neutral BCKalgebra, therefore by (12) it is unique. So, $L=1$. Hence $L R=1$ which shows that X is unique. The multiplication table representing such S3-algebra is given as follows:

Table 2

*	o	a	b	c	d	e	f	g
o	o	o	g	f	e	d	c	b
a	a	o	g	f	e	d	c	b
b	b	b	o	g	f	e	d	c
c	c	c	b	o	g	f	e	d
d	d	d	c	b	o	g	f	e
e	e	e	d	c	b	o	g	f
f	f	f	e	d	c	b	o	g
g	g	g	f	e	d	c	b	o

Hence we have a unique S_{3}-algebra of order 8 .

Example 2. Let $X=\{o, a, b, c, d, e, f, g\}$ be a S_{3}-algebra of order 8 with $M=\{o, a, b\}$ as its BCK-part. Then the BCI-part $X-M=$ $\{c, d, e, f, g\}$. Thus, it follows $o(M)=3$ and $o(X-M)=5$ and $o(G)=o(\{o\} \bigcup\{X-M))=5$. By (10) G is a p-semisimple BCIalgebra. Since, order of G is not divisible by the square of any prime number therefore by proposition $1, \mathrm{G}$ is unique. Thus it follows that $\mathrm{R}=1$. As there are three BCK-algebras of order 3 (See [7]) so L $=3$. Hence $\mathrm{LR}=3$ which shows that there are 3 such S_{3}-algebras. The multiplication tables representing such S_{3}-algebras are given as follows:

Table 3

$*$	o	a	b	c	d	e	f	g
o	o	o	o	c	e	d	g	f
a	a	o	o	c	e	d	g	f
b	b	a	o	c	e	d	g	f
c	c	c	c	o	g	f	e	d
d	d	d	d	f	o	g	c	e
e	e	e	e	g	f	o	d	c
f	f	f	f	d	c	e	o	d
g	g	g	g	e	d	c	f	o

Table 4

$*$	o	a	b	c	d	e	f	g
o	o	o	o	c	e	d	g	f
a	a	o	o	c	e	d	g	f
b	b	b	o	c	e	d	g	f
c	c	c	c	o	g	f	e	d
d	d	d	d	f	o	g	c	e
e	e	e	e	g	f	o	d	c
f	f	f	f	d	c	e	o	d
g	g	g	g	e	d	c	f	o

Table 5

$*$	o	a	b	c	d	e	f	g
o	o	o	o	c	e	d	g	f
a	a	o	a	c	e	d	g	f
b	b	b	o	c	e	d	g	f
c	c	c	c	o	g	f	e	d
d	d	d	d	f	o	g	c	e
e	e	e	e	g	f	o	d	c
f	f	f	f	d	c	e	o	d
g	g	g	g	e	d	c	f	o

REFERENCES

[1] S.A. Bhatti, M.A. Chaudhry and B. Ahmad, On classification of BCIalgebras, Math Japonica 34 (1989), 865-876.
[2] S.A. Bhatti, M.A. Chaudhry and A.H. Zaidi, Characterization of BCI-algebras of order 5, Punjab University J. of Math. 25 (1992), 99-121.
[3] M. Daoje, BCI-algebras and abelian groups, Math. Japonica 32 (5) (1987), 693-696.
[4] S. K. Goel, Characterization of BCI-algebras of order 4, Math. Japonica 33 (1988), 677-686.
[5] Farhat Nisar and S.A. Bhatti, On the class of S_{3}-algebras, East Asian Math. J. 21 (2) (2005), pp 123-133.
[6] Farhat Nisar and S.A. Bhatti, Solution of an unsolved problem in BCKalgebras East Asian Math. J. 21 (1) (2005), pp 49-59.
[7] H. Jiang, Computational methods in the study of finite BCK-algebras with low orders, Kobe Journal Math 7 (1990).
[8] Joseph A. Gallian, Conttemporary abstract algebra, 4 th edition, Narosa Publishing House, New Delhi, India.
[9] K. Iseki and S. Tanaka, An introduction to the theory of BCK- algebras, Math. Japonica 23 (1978), 1-26.
[10] K. Iseki, On BCI-algebras, Math. Seminar notes 8 (1980), 125-130.
[11] L. Tiande and X. Changchung, p-radical in BCI-algebras, Math. Japonica, 30 (1985), 511-517

Farhat Nisar
Department of Mathematics
Queen Mary College
Lahore - Pakistan
E-mail: fhtnr2003@yahoo.com
Shaban Ali Bhatti
Department of Mathematics
University of the Punjab
Lahore - Pakistan
E-mail: shabanbhatti@math.pu.edu.pk

