East Asian Math. J. 23 (2007), No. 1, pp. 75–82

COMPUTATIONAL METHOD TO CHARACTERIZE S_3 -ALGEBRAS

FARHAT NISAR AND SHABAN ALI BHATTI

ABSTRACT. In this paper we give a concrete computational method to characterize S_3 -algebras.

1. Introduction

In [10] K. Iseki introduced the notion of BCI-algebra and establish some of its properties. Onwards so many eminent researchers contributed a lot to the development of the discipline. S.K. Goel [4] calculated the number of BCI-algebras of order 3 and partially BCIalgebras of order 4. In [2] S.A. Bhatti, M.A. Chaudhry and A.H. Zaidi calculated proper BCI-algebras of order 5 up to isomorphism and posed an open problem stated as follows:

How many proper BCI-algebras of order n exist?

Almost 14 years have gone, this problem is still unsolved. In [1] S.A. Bhatti, M.A. Chaudhry and B. Ahmad classified BCI-algebras into S_i -algebras, i=1, 2, 3, 4 and investigated some properties of S_3 -algebras and S_4 -algebras. S_4 -algebras coincide with abelian groups and hence their characterization falls in the area of group theory and is answered there at. An S_3 -algebras is a type of proper BCI-algebra. We answer the problem completely in it as follows:

"Let X be a S_3 -algebra of order n with o(M) = m, then number of S_3 -algebras is LR, where L = number of BCK-algebras of order m and R = number of distinct p-semisimple BCI-algebras of order n-m+1."

Received Semtember 13, 2006. Revised March 23, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: BCK-algebra, BCI-algebra, S_3 -algebra.

2. Preliminaries

DEFINITION 1 ([10]). A BCI-algebra X is an abstract algebra (X, *, o) of type (2, 0), where * is a binary operation, o is a constant which is the smallest element in X, satisfying the following conditions; for all $x, y, z \in X$,

1 ((x * y) * (x * z)) * (z * y) = o 2 (x * (x * y)) * y = o 3 x * x = o $4 x * y = o = y * x \Rightarrow x = y$ where $x * y = o \Leftrightarrow x \le y$.

If o * x = o holds for all $x \in X$, then X is a BCK-algebra [9]. Moreover, the following properties hold in every BCK/BCI-algebra ([10]):

```
5 x * o = x
```

6 (x * y) * z = (x * z) * y

In a BCI-algebra X, the set $M = \{x \in X : o * x = o\}$ is called the BCK-part of X. A BCI-algebra X is called proper if $X - M \neq \phi$. In a BCI-algebra X, $X - M = \{x \in X : o * x \neq o\}$ is known as the pure BCI-part of X.

- 7 Let X be a BCI-algebra. If M = o, then X is called a p-semisimple BCI-algebra [11].
- 8 Let X be a p-semisimple BCI-algebra. If we define x + y = x * (o * y), then (X, +, o) is an abelian group [3, 11].

DEFINITION 2 ([1]). Let X be a BCI-algebra, for $x, y \in X, x, y$ are said to be comparable if $x \leq y$ or $y \leq x$. Similarly in BCK-algebras, if x * y = o or y * x = o, the x and y are comparable.

DEFINITION 3 ([1]). An element $x_o \in X$ is said to be an initial element in X, if $x \leq x_o \Rightarrow x = x_o$. Obviously o is an initial element.

DEFINITION 4 ([1]). Let I_x denote the set of all initial elements of X. We call it the center of X. The reason for calling I_x as the center of X is that each branch (defined below) originates from a unique point of this subset. The cardinality of the center is the same as that as the set of branches of X.

DEFINITION 5 ([1]). Let X be a BCI-algebra with I_x as its center. Let $x_o \in I_x$, then the set $A(x_o) = \{x \in X : x_o * x = o\}$. $A(x_o)$ is known as the branch of X determined by x_o . Each branch $A(x_o)$ is nonempty because by property (3), $x_o * x_o = o \Rightarrow x_o \in A(x_o)$.

We note that $A(x_o)$ consists of all those elements of X which succeed x_o . If $A(x_o) = \{x_o\}$, then $A(x_o)$, the branch determined by x_o , is known as a uniary comparable.

DEFINITION 6 ([1]). A proper BCI-algebra X with $M \neq o$, is S_3 -algebra if each branch $A(x_o)$ in X - M is uniary comparable i.e for all $x \in X - M$, $A(x) = \{x\}$.

- 9 Let X be a S₃-algebra with M as its BCK-part. Then for $x, y \in M$, $z \in X M$, x * z = y * z [5].
- 10 Let X be a S_3 -algebra with M as its BCK-part. Then $G = \{o\} \cup (X M)$ is p-semisimple [5].
- 11 Let X be a S₃-algebra with M as its BCK-part. Then for $x \in M$, $y \in X M$, y * x = y [1].

DEFINITION 7 ([6]). Let X be a BCI-algebra. An element $x_o \in X$ is said to be a Semi-neutral element in X if and only if for all $x \neq x_o$, $x * x_o = x$ and $x_o * x = x_o$.

Moreover in [6], we show that the set of all Semi-neutral elements is denoted as S(X) and is known as the Semi-neutral part of the BCKalgebra X. Obviously S(X) is nonempty, because X is a BCK-algebra, therefore o * x = o and x * o = x. So, $o \in S(X)$.

Note that any nonzero element x of a BCK-algebra X such that $x \leq y$ for some $y \in X$ (or $y \leq x$ for some $y \neq o$) $\in X$ can not be a semi-neutral element of X.

DEFINITION 8 ([6]). A BCK-algebra X is said to be a Semi-neutral BCK-algebra if it satisfies for all $x, y \in X, x \neq y \Rightarrow x * y = x$.

12 If X is a Semi-neutral BCK-algebra of finite order then X is unique.

PROPOSITION 1. A p-semisimple BCI-algebra of order n is unique if n is not divisible by the square of any prime number. *Proof.* Let X be a p-semisimple BCI-algebra of order n such that n is not divisible by the square of any prime number. P-semisimple BCI-algebra coincide with an abelian group (see [3, 11]). It is known that there is a unique abelian group (upto isomorphism) of order n if and only if the order n is not divisible by the square of any prime number (see [8], chapter 11, page 219, Ex. 11, part (f), also see page A15). Thus it follows that X is unique.

PROPOSITION 2. Let X be a S₃-algebra with M as its BCK-part. Then for $x \in M$, $z \neq o$, $z \in G = \{o\} \bigcup (X - M)$,

(i) x * z = o * z;(ii) z * x = z.

Proof. Follows from (9). Follows from (11).

THEOREM 1. Let X be a S_3 -algebra of order n with o(M) = m, then number of S_3 -algebras is LR, where L = number of BCK-algebras of order m and R = number of distinct p-semisimple BCI-algebras of order n-m+1.

Proof. Let X be a S_3 -algebra with o(X) = n and o(M) = m. Since o(X) = n and o(M) = m, therefore o(X - M) = n - m. So, $o(G) = o(\{o\} \bigcup (X - M)) = n - m + 1$. Without any loss of generality, we take $M = \{x_1 = o, x_2, ..., x_m\}$ and $G = \{x_1 = o, x_{m+1}, ..., x_n\}$. Because of proposition 2, for each $x_r \in M$ and $x_t \neq o, x_t \in G$,

and

$$(2) x_r * x_t = o * x_t$$

for r = 1 to m and t = m + 1 to n.

From equation (1), it follows that the entries in the $(m+2)^{th}$ to $(n+1)^{th}$ cells of the 3^{rd} to $(m+1)^{th}$ columns are the same as in $(m+2)^{th}$ to $(n+1)^{th}$ cells of the first column in the multiplication table 1 (given below) representing such S_3 -algebra of order n.

Further from equation (2), it follows that the entries in the $(m+2)^{th}$ to $(n+1)^{th}$ cells of the 3^{rd} to $(m+1)^{th}$ rows are the same as in $(m+2)^{th}$

78

to $(n + 1)^{th}$ cells of the 2nd row in the multiplication table 1 (given below) representing such S_3 -algebra of order n.

Since M is the BCK-part of S_3 -algebra, therefore for each $x_r \in M$,

for r = 1 to m.

Now using the properties (3), (5) and equations (1)-(3), the multiplication table representing such S_3 -algebra of order n is shown as follows:

*	0	x_2	x_3		x_m	x_{m+1}		x_{n-1}	x_n			
0	0	0	0		0	$o * x_{m+1} = ??$		$o * x_{n-1} = ??$	$o * x_n = ??$			
x_2	x_2	0	?		?	-do-		-do-	-do-			
x_3	x_3	?	0		?	-do-		-do-	-do-			
		?	?		?			-do-	-do-			
x_m	x_m	?	?		0	-do-		-do-	-do-			
x_{m+1}	x_{m+1}	x_{m+1}	x_{m+1}		x_{m+1}	0		??	??			
								??	??			
x_{n-1}	x_{n-1}	x_{n-1}	x_{n-1}		x_{n-1}	??		??	??			
x_n	x_n	x_n	x_n		x_n	??		??	??			

Table 1

In the above multiplication table the double dashed columns represent the missing 5th to m^{th} and $(m+3)^{th}$ to $(n-1)^{th}$ columns and the the double dashed rows represent the missing 5th to m^{th} and $(m+3)^{th}$ to $(n-1)^{th}$ rows. The cells for which the values to be computed are denoted as ? and ??, where ? denotes x*y such that x, y \in M and ?? denotes x*y such that x, y \in G

By (10) G is a p-semisimple BCI-algebra. Because of (8) a psemisimple algebra coincide with an abelian group and therefore the number of p-semisimple algebras (up to isomorphism) of order n-m+1 is equal to the number of abelian groups (up to isomorphism) of order n-m+1. We are given that this number is R. Thus there are R multiplication tables representing such p-semisimple algebra G of order n-m+1. Hence the blank cells filled with ?? of multiplication table 1 can be filled in R distinct ways with the entries from the corresponding cells of R multiplication tables representing G respectively. So, we get R multiplication tables representing S_3 -algebras of order n with remaining blank cells filled with ?.

Further we are given that there are L distinct BCK-algebras of order m. Thus there are L Iseki tables representing BCK-algebras order m. Hence the blank cells filled with ? of any of R multiplication tables representing S_3 -algebras of order n can be filled in L distinct ways with the entries from the corresponding cells of L Iseki tables respectively. Hence it follows that there are LR distinct S_3 -algebras of order n.

COROLLARY 1. If the BCK-part M of a finite S_3 -algebra X is semineutral and $o(G = \{o\} \bigcup (X - M))$ is not divisible by the square of any prime number, then X is unique.

Proof. Let X be a S_3 -algebra with M as its BCK-part. Since the BCK-part M is semi neutral BCK-algebra therefore by (12), it is unique. It is given that $o(G = \{o\} \bigcup (X - M))$ is not divisible by the square of any prime number. By (10) G is a p-semisimple BCI-algebra and by proposition 1, G is unique. Thus it follows that L = 1 and R = 1. Hence LR = 1 which shows that X is unique. \Box

EXAMPLE 1. Let $X = \{o, a, b, c, d, e, f, g\}$ be a S_3 -algebra of order 8 with $M = \{o, a\}$ as its BCK-part. Then the BCI-part $X - M = \{b, c, d, e, f\}$. Thus, it follows o(M) = 2 and o(X - M) = 6 and $o(G) = o(\{o\} \bigcup \{X - M)\} = 7$. By lemma (10) G is a p-semisimple BCI-algebra. Since, order of G is not divisible by the square of any prime number therefore by proposition 1, G is unique. Thus it follows that R = 1. Since a BCK-algebra of order 2 is a Semi-neutral BCKalgebra, therefore by (12) it is unique. So, L = 1. Hence LR = 1which shows that X is unique. The multiplication table representing such S3-algebra is given as follows:

	Table 2										
*	0	a	b	с	d	е	f	g			
0	0	0	g	f	е	d	с	b			
a	a	0	g	f	е	d	с	b			
b	b	b	0	g	f	е	d	с			
c	с	с	b	0	g	f	е	d			
d	d	d	с	b	0	g	f	е			
e	e	е	d	с	b	0	g	f			
f	f	f	е	d	с	b	0	g			
g	g	g	f	е	d	с	b	0			

Hence we have a unique S_3 -algebra of order 8.

EXAMPLE 2. Let $X = \{o, a, b, c, d, e, f, g\}$ be a S_3 -algebra of order 8 with $M = \{o, a, b\}$ as its BCK-part. Then the BCI-part $X - M = \{c, d, e, f, g\}$. Thus, it follows o(M) = 3 and o(X - M) = 5 and $o(G) = o(\{o\} \bigcup \{X - M)\} = 5$. By (10) G is a p-semisimple BCIalgebra. Since, order of G is not divisible by the square of any prime number therefore by proposition 1, G is unique. Thus it follows that R = 1. As there are three BCK-algebras of order 3 (See [7]) so L = 3. Hence LR = 3 which shows that there are 3 such S_3 -algebras. The multiplication tables representing such S_3 -algebras are given as follows:

Table 3

Table 4

81

*	0	a	b	с	d	е	f	g
0	0	0	0	с	e	d	g	f
a	a	0	0	с	e	d	g	f
b	b	a	0	с	e	d	g	f
с	с	c	с	0	g	f	е	d
d	d	d	d	f	0	g	с	e
e	е	e	е	g	f	0	d	с
f	f	f	f	d	c	е	0	d
g	g	g	g	е	d	с	f	0

							-	
*	0	a	b	с	d	e	f	g
0	0	0	0	с	е	d	g	f
a	a	0	0	с	е	d	g	f
b	b	b	0	с	е	d	g	f
с	с	с	с	0	g	f	е	d
d	d	d	d	f	0	g	с	е
е	е	е	е	g	f	0	d	с
f	f	f	f	d	с	е	0	d
g	g	g	g	е	d	с	f	0

Table 5

*	0	a	b	c	d	е	f	g
0	0	0	0	с	e	d	g	f
a	а	0	a	с	e	d	g	f
b	b	b	0	с	e	d	g	f
с	с	с	с	0	g	f	е	d
d	d	d	d	f	0	g	с	е
e	е	е	е	g	f	0	d	с
f	f	f	f	d	с	е	0	d
g	g	g	g	е	d	с	f	0

REFERENCES

- S.A. Bhatti, M.A. Chaudhry and B. Ahmad, On classification of BCIalgebras, Math Japonica 34 (1989), 865-876.
- [2] S.A. Bhatti, M.A. Chaudhry and A.H. Zaidi, *Characterization of BCI-algebras of order 5*, Punjab University J. of Math. **25** (1992), 99-121.

FARHAT NISAR AND SHABAN ALI BHATTI

- [3] M. Daoje, BCI-algebras and abelian groups, Math. Japonica 32 (5) (1987), 693-696.
- [4] S. K. Goel, Characterization of BCI-algebras of order 4, Math. Japonica 33 (1988), 677-686.
- [5] Farhat Nisar and S.A. Bhatti, On the class of S_3 -algebras, East Asian Math. J. **21** (2) (2005), pp 123-133.
- [6] Farhat Nisar and S.A. Bhatti, Solution of an unsolved problem in BCKalgebras East Asian Math. J. 21 (1) (2005), pp 49-59.
- [7] H. Jiang, Computational methods in the study of finite BCK-algebras with low orders, Kobe Journal Math 7 (1990).
- [8] Joseph A. Gallian, Conttemporary abstract algebra, 4th edition, Narosa Publishing House, New Delhi, India.
- [9] K. Iseki and S. Tanaka, An introduction to the theory of BCK- algebras, Math. Japonica 23 (1978), 1-26.
- [10] K. Iseki, On BCI-algebras, Math. Seminar notes 8 (1980), 125-130.
- [11] L. Tiande and X. Changchung, *p-radical in BCI-algebras*, Math. Japonica, **30** (1985), 511-517

Farhat Nisar Department of Mathematics Queen Mary College Lahore - Pakistan *E-mail*: fhtnr2003@yahoo.com

Shaban Ali Bhatti Department of Mathematics University of the Punjab Lahore - Pakistan *E-mail*: shabanbhatti@math.pu.edu.pk