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AN IMPROVED LOCAL CONVERGENCE ANALYSIS

FOR SECANT-LIKE METHOD

Ioannis K. Argyros and Säıd Hilout

Abstract. We provide a local convergence analysis for Secant–
like algorithm for solving nonsmooth variational inclusions in Ba-
nach spaces. An existence–convergence theorem and an improve-
ment of the ratio of convergence of this algorithm are given under
center–conditioned divided difference and Aubin’s continuity con-
cept. Our result compare favorably with related obtained in [16].

1. Introduction

This paper considers the problem of approximating a locally unique
solution of nondifferentiable generalized equations using an unipara-
metric secant–type algorithm. Let X, Y be two Banach spaces, F is
a continuous function from X into Y and G is a set–valued map from
X to the subsets of Y with closed graph. We consider a generalized
equation in the form

(1.1) 0 ∈ F (x) + G(x).

Generalized equations (1.1) was introduced by Robinson [20], [21].
(1.1) is an abstract model including mathematical programming prob-
lems, variational inequalities, optimal control, complementarity prob-
lems and other fields.
For approximating locally the unique solution x∗ of (1.1), we consider
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the sequence [10], [16], [17]:

(1.2)

 x0 and x1 are given tarting points
yk = β xk + (1 − β) xk−1; β is fixed in [0, 1[
0 ∈ F (xk) + [yk, xk; F ] (xk+1 − xk) + G(xk+1),

where [x, y; F ] ∈ L(X,Y ) the space of bounded linear operators from
X to Y is called a divided difference of F of order one at the points x
and y, satisfying

(1.3) [x, y; F ] (y − x) = F (y) − F (x), for all x, y in X with x ̸= y.

Note that if F is Fréchet–differentiable, then [x, x; F ] = ∇F (x) (see
[5], [9]).
For G = {0} in (1.1), (1.1) becomes a nonlinear equation in the form

(1.4) F (x) = 0.

To solve (1.4), a Secant method is considered in [1] assuming only that
the nonlinear operator F has a Hölder continuous Fréchet derivative
at the unique solution of (1.4). In [2] a Lipschitz–type condition on
the first order divided difference is used for approximating the soltion
of (1.4). A semilocal convergence of the Secant method under relaxed
conditions is investigated in [6]. Using center–Lipschitz–type condi-
tions, an existence–convergence results are given in [7]. A flexible and
precise point–based approximation is provided in [8] for Secant–type
iterative procedures for solving (1.4). Hernández and Rubio [13] con-
sider a similar iterative method like (1.2) with β = 0 and G = {0}. In
[14], [15] the authors studied the semilocal convergence for nondiffer-
entiable equations using ω–conditioned divided difference for β fixed
in (0, 1).
For G ̸= {0}, some semilocal convergence results of Newton’s method
for solving (1.1) are developed in [3], [4] using certain assumptions
on the first Fréchet derivative of F . In [17] a study of the existence
and the convergence of the algorithm (1.2) is presented using a (ν, p)–
Hölder continuous divided difference condition. In [16] we show the
existence and the q–linear convergence of the sequence defined by (1.2)
using ω–conditioned divided difference.
The purpose of this paper is to refine the convergence analysis of
method (1.2) under weaker hypothesis and less computational cost
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than [16]. Using some ideas given in [5], [9] for nonlinear equations,
we provide a local convergence with the following advantages over re-
lated in [16]: finer error bounds on the distances involved, and a larger
radius of convergence. This observation is very important in compu-
tational mathematics [1]–[9].
The structure of this paper is the following. In section 2, we collect
a number of basic definitions and recall a fixed points theorem for
set–valued maps. In section 3, we show the existence and the q–linear
convergence of the sequence defined by (1.2). Finally, we give some
remarks on our method.

2. Preliminaries and assumptions

In order to make the paper as self–contained as possible we rein-
troduce some definitions and some results on fixed point theorem [7]–
[12], [16]–[23]. We let Z be a Banach space equiped with the norm
∥ . ∥. The distance from a point x to a set A in Z is defined by
dist (x, A) = inf

y∈A
∥ x − y ∥ and the excess e from the set A to the

set C ⊂ Z is given by e(C,A) = sup
x∈C

dist (x,A). For a set–mapping

Λ : X ⇒ Y , we denote by gph Λ the set {(x, y) ∈ X × Y, y ∈ Λ(x)}
and Λ−1(y) the set {x ∈ X, y ∈ Λ(x)}. The norms in the Banach
spaces X and Y will both be denoted by ∥ . ∥ and the closed ball
centered at x with radius r by Br(x).

Definition 2.1. A set–valued Λ is pseudo–Lipschitz around (x0, y0)
∈ gph Λ with modulus M if there exist constants a and b such that

(2.1) sup
z∈Λ(y′)∩Ba(y0)

dist (z, Λ(y′′)) ≤ M ∥ y′ − y′′ ∥,

for all y′ and y′′ in Bb(x0).

In the term of excess, we have an equivalent definition of pseudo–
Lipschitzness replacing the inequality (2.1) by

(2.2) e(Λ(y′) ∩ Ba(y0), Λ(y′′)) ≤ M ∥ y′ − y′′ ∥,
for all y′ and y′′ in Bb(x0). The pseudo–Lipschitzness concept has been
introduced by Aubin [11]. Let us note that the pseudo–Lipschitzness
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of Λ is equivalent to the metric regularity of Λ−1 which is a basic
well–posedness property in optimization problems. For some charac-
terizations and applications of this concept we refer the reader to [11],
[12], [19], [22], [23] and the references given there.

Definition 2.2. A sequence (xn) in X is said to be q–linearly
convergent to x∗ with parameter σ ∈]0, 1[ if we have the following
inequality

∥ xn+1 − x∗ ∥ ≤ σ ∥ xn − x∗ ∥ .

We need the following fixed point theorem [18], [12].

Lemma 2.3. Let ϕ be a set–valued map from X into the closed
subsets of X. We suppose that for η0 ∈ X, r ≥ 0 and 0 ≤ λ < 1 the
following properties hold
(a) dist (η0, ϕ(η0)) ≤ r(1 − λ).
(b) e(ϕ(x1) ∩ Br(η0), ϕ(x2)) ≤ λ ∥ x1 − x2 ∥, ∀x1, x2 ∈ Br(η0).
Then ϕ has a fixed point in Br(η0). That is, there exists x ∈ Br(η0)
such that x ∈ ϕ(x). If ϕ is single–valued, then x is the unique fixed
point of ϕ in Br(η0).

We suppose that for every distinct points x and y in a convex neigh-
borhood V of x∗, there exists a first order divided difference of f at
these points. We will make the following assumptions on V :

(H1) ∥ [x, x∗; F ] − [u, v; F ] ∥≤ ω(∥ x − u ∥, ∥ x∗ − v ∥) for x, u and
v in V , where ω : IR+ × IR+ −→ IR+ is a continuous nondecreasing
function in both arguments.

(H2) The set–valued map (F + G)−1 is pseudo–Lipschitz with con-
stants M , a and b around (0, x∗), (This constants are given by Defini-
tion 2.1).

(H3) For all x, y ∈ V , we have ∥ [x, x∗; F ] ∥≤ d0, ∥ [x, y; F ] ∥≤ d,
M d < 1 and M [d0 + ω(2 a (1 − β), a)] < 1.

Before proving the main result of this study, we need to introduce
some notations [17]. First, define the set–valued maps Q : X ⇒ Y
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and ψk : X ⇒ X by (k ∈ IN∗)

(2.3) Q(x) = F (x∗) + G(x); ψk(x) = Q−1(Zk(x)),

where Zk is a mapping from X to Y defined by

(2.4) Zk(x) = F (x∗) − F (xk) − [yk, xk; F ](x − xk).

3. Convergence study

In this section we will be concerned with the existence and the
convergence of the sequence defined by (1.2) to the solution x∗ of
(1.1) under the previous assumptions. The main result of this study
is as follow.

Theorem 3.1. We suppose that assumptions (H1)–(H3) are satis-

fied. For every constant c such that c0 =
M ω(2 a (1 − β), a)

1 − M d0
< c <

1, there exist δ > 0 such that for every distinct starting points x0 and
x1 in Bδ(x

∗) (with x0 ̸= x∗ and x1 ̸= x∗), and a sequence (xk) defined
by (1.2) which is q–linearly convergent to x∗, i.e.;

(3.1) ∥ xk+1 − x∗ ∥≤ c ∥ xk − x∗ ∥ .

The prove of theorem 3.1 in by induction on k. we first state a result
which the starting points (x0, x1). Let us note that the point x2 is a
fixed point of ψ1 if and only if 0 ∈ F (x1)+ [y1, x1; F ](x2−x1)+G(x2).

Proposition 3.2. Under the assumptions of Theorem 3.1, there
exist δ > 0 such that for every distinct starting points x0 and x1 in
Bδ(x

∗) (with x0 ̸= x∗ and x1 ̸= x∗), the set–valued map ψ1 has a fixed
point x2 in Bδ(x

∗) satisfying

(3.2) ∥ x2 − x∗ ∥≤ c ∥ x1 − x∗ ∥,
where c is given by Theorem 3.1.

Proof of the proposition 3.2. By hypothesis (H2) we have

(3.3) e(Q−1(y′) ∩Ba(x
∗), Q−1(y′′)) ≤ M ∥ y′ − y′′ ∥, ∀y′, y′′ ∈ Bb(0).

Fix δ > 0 such that

(3.4) δ < δ0 = min

{
a ;

b

d0 + 2 ω(2 a (1 − β), a)

}
.
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According to the definition of excess e, we have

(3.5) dist (x∗, ψ1(x
∗)) ≤ e

(
Q−1(0) ∩ Bδ(x

∗), ψ1(x
∗)

)
.

Moreover, by assumption (H1) we have the following

∥ Z1(x
∗) ∥ =∥

(
[x1, x

∗; F ] − [y1, x1; F ]
)
(x∗ − x1) ∥

≤∥ [x1, x
∗; F ] − [y1, x1; F ] ∥∥ x∗ − x1 ∥

≤ ω((1 − β) ∥ x1 − x0 ∥, ∥ x1 − x∗ ∥) ∥ x1 − x∗ ∥
≤ ω(2 a (1 − β), a) ∥ x1 − x∗ ∥ .

(3.6)

By (3.4) we have Z1(x
∗) ∈ Bb(0).

Hence from (3.3) one has

e

(
Q−1(0) ∩ Bδ(x

∗),ψ1(x
∗)

)
= e

(
Q−1(0) ∩ Bδ(x

∗), Q−1[Z1(x
∗)]

)
≤ M ω(2 a (1 − β), a) ∥ x1 − x∗ ∥ .

(3.7)

Using (3.5) the following inequality hold

(3.8) dist (x∗, ψ1(x
∗)) ≤ M ω(2 a (1 − β), a) ∥ x1 − x∗ ∥ .

Since c (1−M d0) > M ω(2 a (1−β), a) there exists λ ∈ [M d, 1[ such
that c (1 − λ) ≥ M ω(2 a (1 − β), a) and

(3.9) dist (x∗, ψ1(x
∗)) ≤ c (1 − λ) ∥ x1 − x∗ ∥ .

Identifying η0, ϕ and r in Lemma 2.3 by x∗, ψ1 and r1 = c ∥ x1−x∗ ∥
respectively, we can deduce from the inequality (3.9) that the assertion
(a) in Lemma 2.3 is satisfied.
By (3.4) we have r1 ≤ δ ≤ a and moreover for x ∈ Bδ(x

∗) we have

∥Z1(x) ∥
=∥ F (x∗) − F (x1) − [y1, x1; F ] (x − x1) ∥
=∥ [x1, x

∗; F ] (x∗ − x + x − x1) − [y1, x1; F ] (x − x1) ∥
≤∥ [x1, x

∗; F ] ∥ ∥ x∗ − x ∥
+ ∥ [x1, x

∗; F ] − [y1, x1; F ] ∥ ∥ x − x1 ∥

(3.10)
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Using the assumptions (H1) and (H3) we obtain

∥Z1(x) ∥
≤ d0 ∥ x∗ − x ∥ +ω(∥ x1 − y1 ∥, ∥ x∗ − x1 ∥) ∥ x − x1 ∥
≤ d0 ∥ x∗ − x ∥

+ ω((1 − β) ∥ x1 − x0 ∥, ∥ x1 − x∗ ∥) ∥ x − x1 ∥
≤ d0 δ + 2 δ ω(2 a (1 − β), a)

(3.11)

Then by (3.4) we deduce that for all x ∈ Bδ(x
∗) we have Z1(x) ∈ Bb(0).

Then it follows that for all x′, x′′ ∈ Br0(x
∗) we have

e(ψ1(x
′) ∩ Br1(x

∗), ψ1(x
′′)) ≤ e(ψ1(x

′) ∩ Bδ(x
∗), ψ1(x

′′)),

which yields by (3.3)

e(ψ1(x
′) ∩ Br1(x

∗), ψ1(x
′′)) ≤ M ∥ Z1(x

′) − Z1(x
′′) ∥

= M ∥ [y1, x1; F ](x′′ − x′) ∥
≤ M d ∥ x′′ − x′ ∥

(3.12)

Using (H3) and the fact that λ ≥ M d, we obtain

(3.13) e(ϕ0(x
′) ∩ Br1(x

∗), ψ1(x
′′)) ≤ M d ∥ x′′ − x′ ∥≤ λ ∥ x′′ − x′ ∥

The condition (b) of Lemma 2.3 is satisfied. By Lemma 2.3 we can
deduce the existence of a fixed point x2 ∈ Br1(x

∗) for the map ψ1.
Then the proof of Proposition 3.2 is complete. ¤

Proof of theorem 3.1. Keeping η0 = x∗ and setting r := rk =
c ∥ x∗ − xk ∥, the application of Proposition 3.2 to the map ψk gives
the desired result. ¤

Application 3.3. A simple example for generalized equations, we
suppose that X is a Hilbert space with inner product (.; .), C is a
convex subset of X and f is a map from X to X. The variational
inequality problem consists to

(3.14) find x∗ in C such that (f(x∗); x − x∗) ≥ 0, for all x ∈ X

By Robinson [20], the problem (3.14) is equivalent to generalized equa-
tion

find x∗ in C such that 0 ∈ f(x∗) + G(x∗)
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where G : X ⇒ X is a set–valued mapping defined by

(3.15) G(x) =

{
{z/ (z; y − x) ≤ 0 for all y ∈ X} if x ∈ C
∅ otherwise

We can then approximate the solution x∗ of problem (3.14) using our
method (1.2).

Remark 3.4. In order for us to compare our results with corre-
sponding ones in [16], let us introduce assumptions:

(H1)⋆ ∥ [x, y; f ] − [u, v; f ] ∥≤ ω(∥ x − u ∥, ∥ y − v ∥) for x, y, u
and v in V , where ω is as function ω defined in (H1).

(H3)⋆ For all x, y ∈ V , we have ∥ [x, y; f ] ∥≤ d and M [d + ω(2 a (1−
β), 2 a)] < 1.

Assumption (H1) is weaker than (H1)⋆. Using (H1)⋆, (H2) and
(H3)⋆, similar result was shown in [16]. Let us define

(3.16) c0 =
M ω(2 a (1 − β), a)

1 − M d
,

and

(3.17) δ0 = min

{
a ;

b

d + 2 ω(2 a (1 − β), a)

}
.

We clearly have:

(3.18) ω ≤ ω,

(3.19) d0 ≤ d,

(3.20) c0 ≤ c0,

(3.21) δ0 ≤ δ0,

and
ω

ω
,

d

d0

,
c0

c0

can be arbitrarily large [5]–[9].

It then follows that our radius of convergence is larger than the cor-
responding in [16]. Hence, the claims made in the introduction have
been justified.
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17. S. Hilout, A. Piétrus, A semilocal convergence of a secant–type method for
solving generalized equations, Positivity 10 (2006), 673–700.

18. A.D. Ioffe, V.M. Tikhomirov, Theory of extremal problems, North Holland,
Amsterdam, 1979.

19. B.S. Mordukhovich, Stability theory for parametric generalized equations and
variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc., 343
(1994), 609-657.



270 Ioannis K. Argyros and Säıd Hilout

20. S.M. Robinson, Generalized equations and their solutions, part I: basic theory,
Math. Programming Study, 10 (1979), 128–141.

21. S.M. Robinson, Generalized equations and their solutions, part II: applications
to nonlinear programming, Math. Programming Study, 19 (1982), 200–221.

22. R.T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Analy-
sis, 9 (1984), 867–885.

23. R.T. Rockafellar, R. J–B. Wets, Variational analysis, A Series of Comprehen-
sives Studies in Mathematics, Springer, 317, 1998.

Ioannis K. Argyros
Cameron university
Department of Mathematics Sciences
Lawton, OK 73505, USA
ioannisa@cameron.edu
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