IDEALS AND BRANCHES OF BCC-ALGEBRAS

Bushra Karamdin and Shaban Ali Bhatti

Abstract

Basic properties of branches of weak BCC-algebras and ideals of BCC-algebras containing only atoms are described.

1. Introduction

In 1966, Y. Imai and K. Iséki defined two classes of algebras of type $(2,0)$ called BCK-algebras and BCI-algebras [9, 10]. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. A. Wroński [17] solved this problem and proved that BCK-algebras do not form a variety. In connection with this problem Y. Komori introduced in [14] a notion of BCC-algebras which is a generalization of a notion of BCK-algebras and proved that the class of all BCCalgebras is not a variety, but the variety generated by BCC-algebras, that is the smallest variety containing the class of all BCC-algebras, is finitely based [14]. W. A. Dudek [3] redefined the notion of BCCalgebras by using a dual form of the ordinary definition. Further study of BCC-algebras was continued in $[1,4,6,7,8]$. some open - rather hard - problems are posed in [5].

In this short note we describe basic properties of branches in BCCalgebras and ideals of BCC-algebras containing only atoms.

2. Preliminaries

Definition 2.1. A weak BCC-algebra X is an abstract algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms

Received March 10, 2007. Revised June 4, 2007.
2000 Mathematics Subject Classification: 03G25, 06F35.
Key words and phrases: BCC-algebra, weak BCC-algebra, ideal, branch.
(i) $((x * y) *(z * y)) *(x * z)=0$,
(ii) $x * x=0$,
(iii) $x * 0=x$,
(iv) $x * y=y * x=0 \longrightarrow x=y$.

A weak BCC-algebra satisfying the identity
(v) $0 * x=0$,
is called a $B C C$-algebra. A BCC-algebra with the condition
(vi) $(x *(x * y)) * y=0$
is called a BCK-algebra.
One can prove (see [2,3] or [17]) that a BCC-algebra is a BCKalgebra iff it satisfies the identity
(vii) $(x * y) * z=(x * z) * y$.

An algebra $(X, *, 0)$ of type $(2,0)$ satisfying the axioms $(i),(i i),(i i i)$, (iv) and (vi) is called a BCI-algebra. A BCI-algebra satisfies also (vii) (cf. [11]). A weak BCC-algebra is a BCI-algebra iff it satisfies (vii).

A (weak) BCC-algebra which is not a BCK-algebra (respectively, BCI-algebra) is called proper. A proper BCC-algebra has at least four elements. Moreover, for every $n \geq 4$ there exists at least one proper BCC-algebra (cf. [2, 3]). Analogous result are valid for weak BCCalgebras (cf. [4]).

In all these algebras one can defined a natural partial order \leq putting

$$
x \leq y \longleftrightarrow x * y=0
$$

In all BCC/BCK-algebras we have $0 \leq x$ for every $x \in X$. Moreover, from (i) it follows that in any (weak) BCC-algebra

$$
\begin{gather*}
x \leq y \longrightarrow x * z \leq y * z \tag{1}\\
x \leq y \longrightarrow z * y \leq z * x
\end{gather*}
$$

for all $x, y, z \in X$.
In BCC-algebras we also have

$$
\begin{equation*}
x * y \leq x \tag{3}
\end{equation*}
$$

for all $x, y \in X$ (cf. [3]).
We say that two elements $x, y \in X$ are comparable if $x \leq y$ or $y \leq x$. An algebra X is linearly ordered if each its two elements are
comparable. A linearly ordered weak BCC-algebra (BCI-algebra) is a BCC-algebra (BCK-algebra, respectively).

The set of all elements comparable with 0 , i.e., the set

$$
B(X)=\{x \in X \mid 0 \leq x\}
$$

is called a $B C K$-part of BCI-algebra X.

3. Branches and atoms

Definition 3.1. An element a of a weak BCC-algebra X is called an atom if $x \leq a$ implies $x=0$ or $x=a$. The set of all atoms is denoted by $A(X)$.

Lemma 3.1. (cf. [6]) If $a \neq b$ are non-zero atoms of a BCC-algebra X then $a * b=a$.

Note that in fact this lemma is valid also in the case when $a=0$ or $b=0$. Moreover, from this lemma it follows that the set of all atoms of a given BCC-algebras is its subalgebra. For weak BCC-algebras it is not true (see Example 3.1 below).

The set

$$
B(a)=\{x \in X \mid a \leq x\}
$$

where a is an atom of X, is called a branch of X. An element a is called initial for $B(a)$. In the case when there exists an $b \neq a$ such that $B(a) \subset B(b)$ we say that a branch $B(a)$ is improper. So, a branch $B(a)$ is proper if no $b \in X$ such that $b \neq a$ and $b \leq a$. The set of all initial elements of proper branches of X is denoted by $I(X)$. Obviously $I(X) \subset A(X)$.

Example 3.1. Consider on the set $X=\{0, a, b, c\}$ two operations defined by the following tables:

$*$	0	a	b	c
0	0	0	b	b
a	a	0	b	b
b	b	b	0	0
c	c	c	a	0

Table 1

$*$	0	a	b	c
0	0	0	b	b
a	a	0	c	c
b	b	b	0	0
c	c	c	a	0

Table 2

Algebras $(X, *, 0)$ defined by these two tables are proper weak BCCalgebras (cf. [4]). In these algebras we have $A(X)=\{0, a, b\}, B(0)=$ $\{0, a\}, B(a)=\{a\}, B(b)=\{b, c\}, I(X)=\{0, b\}$. The branches $B(0)$ and $B(b)$ are proper, the branch $B(a)$ is improper. $I(X)$ is a subalgebra in both these algebras, but $A(X)$ is a subalgebra only in the algebra defined by Table 1.

Example 3.2. Consider on the set $X=\{0, a, b, c\}$ two operations defined by the following tables:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	a
c	c	c	a	0

Table 3

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	c	a	0

Table 4

Algebras $(X, *, 0)$ defined by these tables are proper BCC-algebras (cf. [3]). In these algebras $B(0)=B(X)=X$ and $I(X)=\{0\}$. No other proper branches. The algebra defined by Table 3 has one improper branch $B(a)=\{a, b, c\}$, the algebra defined by Table 4 has two improper branches: $B(a)=\{a, c\}$ and $B(b)=\{b, c\}$.

Definition 3.2. A nonempty subset A of a weak BCC-algebra X is called a chain if each its two elements are comparable. A chain initiated by a is denoted by $C(a)$. In the case $B(a)=C(a)$ we say also that $B(a)$ is a linear branch. A branch containing only one element is called trivial. A branch which has at least two incomparable elements and is the set-theoretic union at least two chains is called expanded.

Each BCC-algebra is a linear or expanded branch. A BCC-algebra defined by Table 3 is a set-theoretic union of two chains: $C_{1}(0)=$ $\{0, a, b\}$ and $C_{2}(0)=\{0, a, c\}$. A branch $B(a)$ is a union of chains $C_{1}(a)=\{a, b\}$ and $C_{2}(a)=\{b, c\}$. A BCC-algebra defined by Table 4 is a union of chains $C_{1}(0)=\{0, a, c\}$ and $C_{2}(0)=\{o, b, c\}$. Weak BCC-algebras defined in Example 3.1 have two linear branches: $B(0)$ and $B(b)$.

Definition 3.3. A BCC-algebra X is called implicative if $x *(y * x)=x$,
positive implicative if $(x * y) * y=x * y$,
commutative if $x \wedge y=y \wedge x$
holds for all $x, y \in X$, where $x \wedge y=y *(y * x)$.
Example 3.3. Consider on the set $X=\{0, a, b, c\}$ two operations defined by the following tables:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	a
c	c	c	c	0

Table 5

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

Table 6

The algebra defined by Table 5 is a positive implicative proper BCC-algebra (Table 12 in [3]) which is not implicative and commutative. The algebra defined by Table 6 is a commutative, positive implicative and implicative BCC-algebra in which all elements are atoms (see our Proposition 4.5 and Corollary 4.3).

Proposition 3.1. If a is an atom of a $B C C$-algebra X then $a * x=a$ for every $x \notin B(a)$.

Proof. Indeed, by (3) for every $x \in X$ we have $a * x \leq a$ whence we conclude $a * x=0$ or $a * x=a$. The first is impossible because $x \notin B(a)$. So, $a * x=a$.

Corollary 3.1. [6] If $a \neq b$ are atoms of a BCC-algebra, then $a * b=a$.

Proposition 3.2. An element a of a weak BCC-algebra is its initial element if and only if $0 *(0 * a)=a$.

Proof. Indeed, for any element $a \in X$ we have $(0 *(0 * a)) * a=$ $((a * a) *(0 * a)) *(a * 0)=0$, i.e., $0 *(0 * a) \leq a$. Hence, if a is initial, then $0 *(0 * a)=a$.

Conversely, let $0 *(0 * a)=a$ for some $a \in X$. If $z \leq a$, then $z * a=0$ and $a * z=(0 *(0 * a)) * z=((z * a) *(0 * a)) *(z * 0)=0$. Thus $a * z=z * a=0$. Therefore $z=a$. So, $a \in I(X)$.

Proposition 3.3. Let X be a weak BCC-algebra. $B(a) \cap B(b)=\phi$ for distinct $a, b \in I(X)$.

Proof. If $B(a) \cap B(b) \neq \phi$, then there exists at leas one $x \in B(a) \cap$ $B(b)$. Let $x_{0}=0 *(0 * x)$. Obviously $x_{0}=0 *(0 * x)=(x * x) *(0 * x) \leq$ $(x * 0)=x$, i.e., $x_{0} \leq x$. If $z \leq x_{0}$ for some $z \in X$, then $z * x_{0}=0$ and $z * x=0$. So, $x_{0} * z=(0 *(0 * x)) * z=((z * x) *(0 * x)) *(z * 0)=0$. Therefore $z=x_{0}$. This means that x_{0} is an initial element of X. Since $b \leq x$, we have $x_{0}=0 *(0 * x)=(b * x) *(0 * x) \leq b * 0=b$, which implies $x_{0}=b$ because b is initial. Similarly $x_{0}=a$. Whence $a=b$, which is impossible.

Corollary 3.2. Comparable elements are contained in the same branch.

Proof. Let $x, y \in X$ be comparable. Without loss of generality we can assume that $x \leq y$. Then $x \in B(a)$ for some $a \in I(X)$. Thus $a \leq x \leq y$ which implies $y \in B(a)$.

Proposition 3.4. $x * y, y * x \in B(X)$ for any two comparable elements x and y of a weak BCC-algebra X.

Proof. Let x and y be comparable. Then $x \leq y$ or $y \leq x$. Suppose $x \leq y$. Then $x * y=0 \in B(X)$ and $x * x \leq y * x$ by (1). Thus $0 \leq y * x$, i.e., $y * x \in B(X)$.

Proposition 3.5. A BCK algebra X is positive implicative iff $x *$ $y=z \Rightarrow z * y=z$.

Proof. If X is positive implicative then $(x * y) * y=x * y$ let $x * y=z$ then $(x * y) * y=x * y \Rightarrow z * y=z$.

Conversely, suppose that $x * y=z \Rightarrow z * y=z$. Then $(x * y) * y=$ $z * y=z=x * y$. Hence X is positive implicative.

4. Ideals

Definition 4.1. Let X be a BCC-algebra. A subset $A \subset X$ containing 0 is called
a BCK-ideal if $y, x * y \in A$ imply $x \in A$,
a $B C C$-ideal if $y,(x * y) * z \in A$ imply $x * z \in A$,
a strong BCC-ideal if $y,(x * y) * z \in A$ imply $x \in A$.
Every BCC-ideal is a BCK-ideal. The converse is not true [7].

Proposition 4.1. If A is a strong $B C C$-ideal of a $B C C$-algebra X, then $y \in A$ and $x \leq y$ imply $x \in A$.

Proof. Indeed, $x \leq y$ and $y \in A$ imply $x * y=0 \in A$. So, $(x *$ $y) * 0, y * 0 \in A$ by (iii). This, according to the definition of a strong BCC-ideal, gives $x \in A$.

Proposition 4.2. Every strong BCC-ideal is a BCC-ideal.
Proof. Let $y,(x * y) * z \in A$, where A is a strong BCC-ideal. Then $x \in A$, whence by (3) and Proposition 4.1, we obtain $x * z \in A$. So, A is a BCC-ideal.

Proposition 4.3. If every element of a BCC-algebra X is an atom then every subset of X containing 0 is a subalgebra and a BCK-ideal of X. In this case X is a BCK-algebra.

Proof. Let A be a subset of X containing 0 . If $0, x \in A$, where $x \neq 0$, then $0 * x, x * 0 \in A$ by (iii) and (v). If $x, y \in A$ are non-zero atoms, then $x * y=x$, by Lemma 3.1. Hence $x * y \in A$ and so A is a subalgebra of X. Now, if $x, y * x \in A$ for some $x, y \in X$, then $y * x=0$ or $y=y * x \in A$ because $y * x \leq y$ (by 3) and y is an atom. In the case $y * x=0$ we have $y \leq x$ which implies $y=0$ or $y=x$. So, in any case $y \in A$. Thus A is a BCK-ideal of X. The rest is a consequence of Corollary 8 from [6].

Proposition 4.4. In a BCC-algebra containing only atoms each $B C C$-ideal is strong.

Proof. Let A be a BCC-ideal of a BCC-algebra X and let $y,(x *$ $y) * z \in A$ for some $x, y, z \in A$. Then $x * z \in A$, whence, by Lemma 3.1, we conclude $x \in A$.

As a consequence of the above results we obtain
Corollary 4.1. In a BCC-algebra containing only atoms the following conditions are equivalent:
a) $0 \in A$,
b) A is a subalgebra,
c) A is a BCC-ideal,
d) A is a BCK-ideal,
$e) a$ is a strong BCC-ideal.

Comparing this corollary with Theorem 3 from [6] we have
Corollary 4.2. A BCC-algebra contains only atoms iff each of its subalgebra is a BCC-ideal.

Proposition 4.5. A BCC-algebra containing only atoms is a positive implicative and commutative BCK-algebra.

Proof. Since each element of X is an atom of X, so by Lemma 3.1 for all $x, y \in X$ we have $x * y=x$. Hence $(x * y) * y=x * y$, i.e., X is positive implicative. Moreover $x *(x * y)=x * x=0$ and $y *(y * x)=y * y=0$. Thus X is commutative. The rest is a consequence of Corollary 8 from [6].

As a consequence of the above result and Theorem 6.2 from [16] we obtain

Corollary 4.3. A BCC-algebra containing only atoms is an implicative BCK-algebra.

Proposition 4.6. If every element of a BCC-algebra X is an atom and A is an ideal of X then every element of the quotient algebra X / A is also atom.

Proof. Let X a BCC-algebra contains only atoms and let A be an ideal of X. Then the quotient algebra $X / A=\left\{C_{x}: x \in X\right\}$, where $C_{x}=\{y \in X: y * x, x * y \in A\}$, is a BCC-algebra (cf. [7]) with respect to the operation $C_{x} * C_{y}=C_{x * y}$. We show that each element in X / A is an atom. Suppose that for $C_{x} \in X / A$ there exists $C_{y} \in X / A$ such that $C_{y} \leq C_{x}$. Then $C_{y} * C_{x}=C_{0}$, i.e., $C_{y * x}=C_{0}$ which implies $y * x=0$. Thus $y \leq x$, whence $y=x$ or $y=0$ because x is an atom. Hence $C_{y}=C_{x}$ or $C_{y}=C_{0}$. So C_{x} is an atom of X / A.

REFERENCES

[1] I.M.Dudek and W.A.Dudek: Remarks on BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka, 2 (1996), 63-70.
[2] W.A.Dudek: On BCC-algebras, Logique et Analyse 129-130 (1990), 103-111.
[3] W.A.Dudek: On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150.
[4] W.A.Dudek: Remarks on the axioms system for BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka, 2 (1996), 46-61.
[5] W.A.Dudek: Unsolved problems in BCK-algebras, East Asian Math. J. 17 (2001), 115-128.
[6] W.A.Dudek and X.H.Zhang: On atoms in BCC-algebras, Discussiones Math. 15 (1995), 81-85.
[7] W.A.Dudek and X.H.Zhang: On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), 21-29.
[8] W.A.Dudek and X.H.Zhang: Initial segments in BCC-algebras, Math. Moravica 4 (2000), 27-34.
[9] Y.Imai and K.Iséki: On axiom system of propositional calculi XIV, Poc. Japan Acad. 42 (1966), 19-22.
[10] K.Iséki: An algebra related with a prepositional calcuus, Proc. Japan Acad. 42 (1966), 26-29.
[11] K.Iséki: On BCI-algebras, Math. Sem. Notes, 8 (1980), 125-130.
[12] K.Iséki and S.Tanaka: Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366.
[13] K.Iséki and S.Tanaka: An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
[14] Y.Komori: The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13-16.
[15] Y.Komori: The class of BCC-algebras is not variety, Math. Japon. 29 (1984), 391-394.
[16] J.Meng and J.B.Jun: BCK-algebras, Kyungmoonsa, Seoul 1994.
[17] A.Wroński: BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.
B. Karamdin

Department of Mathematics
University of the Punjab, Quaid-e-Azam Campus
Lahore-54590, Pakistan
E-mail: ayeshafatima5@hotmail.com
S. A. Bhatti

Department of Mathematics
University of Education Township Campus
Lahore-54590, Pakistan

