IDEALS AND BRANCHES OF BCC-ALGEBRAS

BUSHRA KARAMDIN AND SHABAN ALI BHATTI

ABSTRACT. Basic properties of branches of weak BCC-algebras and ideals of BCC-algebras containing only atoms are described.

1. Introduction

In 1966, Y. Imai and K. Iséki defined two classes of algebras of type (2,0) called BCK-algebras and BCI-algebras [9, 10]. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. A. Wroński [17] solved this problem and proved that BCK-algebras do not form a variety. In connection with this problem Y. Komori introduced in [14] a notion of BCC-algebras which is a generalization of a notion of BCK-algebras and proved that the class of all BCC-algebras is not a variety, but the variety generated by BCC-algebras, that is the smallest variety containing the class of all BCC-algebras, is finitely based [14]. W. A. Dudek [3] redefined the notion of BCC-algebras was continued in [1, 4, 6, 7, 8]. some open - rather hard - problems are posed in [5].

In this short note we describe basic properties of branches in BCCalgebras and ideals of BCC-algebras containing only atoms.

2. Preliminaries

DEFINITION 2.1. A weak BCC-algebra X is an abstract algebra (X, *, 0) of type (2, 0) satisfying the following axioms

Received March 10, 2007. Revised June 4, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: BCC-algebra, weak BCC-algebra, ideal, branch.

(i) ((x*y)*(z*y))*(x*z) = 0,

 $(ii) \quad x * x = 0,$

 $(iii) \quad x * 0 = x,$

 $(iv) \quad x * y = y * x = 0 \longrightarrow x = y.$

A weak BCC-algebra satisfying the identity

 $(v) \quad 0 * x = 0,$

is called a *BCC-algebra*. A BCC-algebra with the condition

(vi) (x * (x * y)) * y = 0

is called a *BCK-algebra*.

One can prove (see [2, 3] or [17]) that a BCC-algebra is a BCKalgebra iff it satisfies the identity

(vii) (x * y) * z = (x * z) * y.

An algebra (X, *, 0) of type (2, 0) satisfying the axioms (i), (ii), (ii), (iv) and (vi) is called a *BCI-algebra*. A BCI-algebra satisfies also (vii) (cf. [11]). A weak BCC-algebra is a BCI-algebra iff it satisfies (vii).

A (weak) BCC-algebra which is not a BCK-algebra (respectively, BCI-algebra) is called *proper*. A proper BCC-algebra has at least four elements. Moreover, for every $n \ge 4$ there exists at least one proper BCC-algebra (cf. [2, 3]). Analogous result are valid for weak BCC-algebras (cf. [4]).

In all these algebras one can defined a natural partial order \leq putting

$$x \le y \longleftrightarrow x * y = 0.$$

In all BCC/BCK-algebras we have $0 \le x$ for every $x \in X$. Moreover, from (i) it follows that in any (weak) BCC-algebra

(1) $x \le y \longrightarrow x * z \le y * z,$

$$(2) x \le y \longrightarrow z * y \le z * x$$

for all $x, y, z \in X$.

In BCC-algebras we also have

for all $x, y \in X$ (cf. [3]).

We say that two elements $x, y \in X$ are *comparable* if $x \leq y$ or $y \leq x$. An algebra X is *linearly ordered* if each its two elements are

248

comparable. A linearly ordered weak BCC-algebra (BCI-algebra) is a BCC-algebra (BCK-algebra, respectively).

The set of all elements comparable with 0, i.e., the set

$$B(X) = \{x \in X \mid 0 \le x\}$$

is called a BCK-part of BCI-algebra X.

3. Branches and atoms

DEFINITION 3.1. An element a of a weak BCC-algebra X is called an *atom* if $x \leq a$ implies x = 0 or x = a. The set of all atoms is denoted by A(X).

LEMMA 3.1. (cf. [6]) If $a \neq b$ are non-zero atoms of a BCC-algebra X then a * b = a.

Note that in fact this lemma is valid also in the case when a = 0 or b = 0. Moreover, from this lemma it follows that the set of all atoms of a given BCC-algebras is its subalgebra. For weak BCC-algebras it is not true (see Example 3.1 below).

The set

$$B(a) = \{x \in X | a \le x\}$$

where a is an atom of X, is called a *branch* of X. An element a is called *initial* for B(a). In the case when there exists an $b \neq a$ such that $B(a) \subset B(b)$ we say that a branch B(a) is *improper*. So, a branch B(a) is proper if no $b \in X$ such that $b \neq a$ and $b \leq a$. The set of all initial elements of proper branches of X is denoted by I(X). Obviously $I(X) \subset A(X)$.

EXAMPLE 3.1. Consider on the set $X = \{0, a, b, c\}$ two operations defined by the following tables:

*	0	a	b	c	*	0	a	b	c			
0	0	0	b	b	0	0	0	b	b		a	c
a	a	0	b	b	a	a	0	c	c		Ť	•
b	b	b	0	0	b	b	b	0	0			
c	c	c	a	0	c	c	c	a	0		Ō	Ď
	Т	able	e 1			Та	able	e 2				

Algebras (X, *, 0) defined by these two tables are proper weak BCCalgebras (cf. [4]). In these algebras we have $A(X) = \{0, a, b\}, B(0) = \{0, a\}, B(a) = \{a\}, B(b) = \{b, c\}, I(X) = \{0, b\}$. The branches B(0) and B(b) are proper, the branch B(a) is improper. I(X) is a subalgebra in both these algebras, but A(X) is a subalgebra only in the algebra defined by Table 1.

EXAMPLE 3.2. Consider on the set $X = \{0, a, b, c\}$ two operations defined by the following tables:

*	0	a	b	c		*	0	a	b	c		
0	0	0	0	0		0	0	0	0	0	$\overset{c}{\wedge}$	
a	a	0	0	0		a	a	0	a	0	$a \checkmark b$	
b	b	b	0	a	u l	b	b	b	0	0	\sim	
c	c	c	a	0	0	c	c	c	a	0	0	
Table 3						Table 4						

Algebras (X, *, 0) defined by these tables are proper BCC-algebras (cf. [3]). In these algebras B(0) = B(X) = X and $I(X) = \{0\}$. No other proper branches. The algebra defined by Table 3 has one improper branch $B(a) = \{a, b, c\}$, the algebra defined by Table 4 has two improper branches: $B(a) = \{a, c\}$ and $B(b) = \{b, c\}$.

DEFINITION 3.2. A nonempty subset A of a weak BCC-algebra X is called a *chain* if each its two elements are comparable. A chain initiated by a is denoted by C(a). In the case B(a) = C(a) we say also that B(a) is a *linear branch*. A branch containing only one element is called *trivial*. A branch which has at least two incomparable elements and is the set-theoretic union at least two chains is called *expanded*.

Each BCC-algebra is a linear or expanded branch. A BCC-algebra defined by Table 3 is a set-theoretic union of two chains: $C_1(0) = \{0, a, b\}$ and $C_2(0) = \{0, a, c\}$. A branch B(a) is a union of chains $C_1(a) = \{a, b\}$ and $C_2(a) = \{b, c\}$. A BCC-algebra defined by Table 4 is a union of chains $C_1(0) = \{0, a, c\}$ and $C_2(0) = \{o, b, c\}$. Weak BCC-algebras defined in Example 3.1 have two linear branches: B(0) and B(b).

DEFINITION 3.3. A BCC-algebra X is called implicative if x * (y * x) = x,

250

positive implicative if (x * y) * y = x * y, commutative if $x \wedge y = y \wedge x$ holds for all $x, y \in X$, where $x \wedge y = y * (y * x)$.

EXAMPLE 3.3. Consider on the set $X = \{0, a, b, c\}$ two operations defined by the following tables:

* 0	a b	c		*	0	a	b	c	
0 0 0	0 (0	b_{\bullet}	0	0	0	0	0	1
$a \mid a \in$	0 (a	$a \bullet \nearrow c$	a	a	0	a	a	
$b \mid b \mid b$	6 0	a		b	b	b	0	b	\sim
$c \mid c \mid c$	c c	0	Ō	c	c	c	c	0	Ŏ
Tał	ole 5				Т	able	e 6		

The algebra defined by Table 5 is a positive implicative proper BCC-algebra (Table 12 in [3]) which is not implicative and commutative. The algebra defined by Table 6 is a commutative, positive implicative and implicative BCC-algebra in which all elements are atoms (see our Proposition 4.5 and Corollary 4.3).

PROPOSITION 3.1. If a is an atom of a BCC-algebra X then a * x = a for every $x \notin B(a)$.

Proof. Indeed, by (3) for every $x \in X$ we have $a * x \leq a$ whence we conclude a * x = 0 or a * x = a. The first is impossible because $x \notin B(a)$. So, a * x = a.

COROLLARY 3.1. [6] If $a \neq b$ are atoms of a BCC-algebra, then a * b = a.

PROPOSITION 3.2. An element a of a weak BCC-algebra is its initial element if and only if 0 * (0 * a) = a.

Proof. Indeed, for any element $a \in X$ we have (0 * (0 * a)) * a = ((a * a) * (0 * a)) * (a * 0) = 0, i.e., $0 * (0 * a) \leq a$. Hence, if a is initial, then 0 * (0 * a) = a.

Conversely, let 0 * (0 * a) = a for some $a \in X$. If $z \leq a$, then z * a = 0 and a * z = (0 * (0 * a)) * z = ((z * a) * (0 * a)) * (z * 0) = 0. Thus a * z = z * a = 0. Therefore z = a. So, $a \in I(X)$.

PROPOSITION 3.3. Let X be a weak BCC-algebra. $B(a) \cap B(b) = \phi$ for distinct $a, b \in I(X)$.

Bushra Karamdin and Shaban Ali Bhatti

Proof. If $B(a) \cap B(b) \neq \phi$, then there exists at leas one $x \in B(a) \cap B(b)$. Let $x_0 = 0 * (0 * x)$. Obviously $x_0 = 0 * (0 * x) = (x * x) * (0 * x) \leq (x * 0) = x$, i.e., $x_0 \leq x$. If $z \leq x_0$ for some $z \in X$, then $z * x_0 = 0$ and z * x = 0. So, $x_0 * z = (0 * (0 * x)) * z = ((z * x) * (0 * x)) * (z * 0) = 0$. Therefore $z = x_0$. This means that x_0 is an initial element of X. Since $b \leq x$, we have $x_0 = 0 * (0 * x) = (b * x) * (0 * x) \leq b * 0 = b$, which implies $x_0 = b$ because b is initial. Similarly $x_0 = a$. Whence a = b, which is impossible. □

COROLLARY 3.2. Comparable elements are contained in the same branch.

Proof. Let $x, y \in X$ be comparable. Without loss of generality we can assume that $x \leq y$. Then $x \in B(a)$ for some $a \in I(X)$. Thus $a \leq x \leq y$ which implies $y \in B(a)$.

PROPOSITION 3.4. $x * y, y * x \in B(X)$ for any two comparable elements x and y of a weak BCC-algebra X.

Proof. Let x and y be comparable. Then $x \leq y$ or $y \leq x$. Suppose $x \leq y$. Then $x * y = 0 \in B(X)$ and $x * x \leq y * x$ by (1). Thus $0 \leq y * x$, i.e., $y * x \in B(X)$.

PROPOSITION 3.5. A BCK algebra X is positive implicative iff $x * y = z \Rightarrow z * y = z$.

Proof. If X is positive implicative then (x*y)*y = x*y let x*y = zthen $(x*y)*y = x*y \Rightarrow z*y = z$.

Conversely, suppose that $x * y = z \Rightarrow z * y = z$. Then (x * y) * y = z * y = z = x * y. Hence X is positive implicative.

4. Ideals

252

DEFINITION 4.1. Let X be a BCC-algebra. A subset $A \subset X$ containing 0 is called

a *BCK-ideal* if $y, x * y \in A$ imply $x \in A$,

a *BCC-ideal* if $y, (x * y) * z \in A$ imply $x * z \in A$,

a strong BCC-ideal if $y, (x * y) * z \in A$ imply $x \in A$.

Every BCC-ideal is a BCK-ideal. The converse is not true [7].

PROPOSITION 4.1. If A is a strong BCC-ideal of a BCC-algebra X, then $y \in A$ and $x \leq y$ imply $x \in A$.

Proof. Indeed, $x \leq y$ and $y \in A$ imply $x * y = 0 \in A$. So, $(x * y) * 0, y * 0 \in A$ by *(iii)*. This, according to the definition of a strong BCC-ideal, gives $x \in A$.

PROPOSITION 4.2. Every strong BCC-ideal is a BCC-ideal.

Proof. Let $y, (x * y) * z \in A$, where A is a strong BCC-ideal. Then $x \in A$, whence by (3) and Proposition 4.1, we obtain $x * z \in A$. So, A is a BCC-ideal.

PROPOSITION 4.3. If every element of a BCC-algebra X is an atom then every subset of X containing 0 is a subalgebra and a BCK-ideal of X. In this case X is a BCK-algebra.

Proof. Let A be a subset of X containing 0. If $0, x \in A$, where $x \neq 0$, then $0 * x, x * 0 \in A$ by (*iii*) and (v). If $x, y \in A$ are non-zero atoms, then x * y = x, by Lemma 3.1. Hence $x * y \in A$ and so A is a subalgebra of X. Now, if $x, y * x \in A$ for some $x, y \in X$, then y * x = 0 or $y = y * x \in A$ because $y * x \leq y$ (by 3) and y is an atom. In the case y * x = 0 we have $y \leq x$ which implies y = 0 or y = x. So, in any case $y \in A$. Thus A is a BCK-ideal of X. The rest is a consequence of Corollary 8 from [6].

PROPOSITION 4.4. In a BCC-algebra containing only atoms each BCC-ideal is strong.

Proof. Let A be a BCC-ideal of a BCC-algebra X and let $y, (x * y) * z \in A$ for some $x, y, z \in A$. Then $x * z \in A$, whence, by Lemma 3.1, we conclude $x \in A$.

As a consequence of the above results we obtain

COROLLARY 4.1. In a BCC-algebra containing only atoms the following conditions are equivalent:

a) $0 \in A$,

b) A is a subalgebra,

c) A is a BCC-ideal,

d) A is a BCK-ideal,

e) a is a strong BCC-ideal.

Comparing this corollary with Theorem 3 from [6] we have

COROLLARY 4.2. A BCC-algebra contains only atoms iff each of its subalgebra is a BCC-ideal.

PROPOSITION 4.5. A BCC-algebra containing only atoms is a positive implicative and commutative BCK-algebra.

Proof. Since each element of X is an atom of X, so by Lemma 3.1 for all $x, y \in X$ we have x * y = x. Hence (x * y) * y = x * y, i.e., X is positive implicative. Moreover x * (x * y) = x * x = 0 and y * (y * x) = y * y = 0. Thus X is commutative. The rest is a consequence of Corollary 8 from [6].

As a consequence of the above result and Theorem 6.2 from [16] we obtain

COROLLARY 4.3. A BCC-algebra containing only atoms is an implicative BCK-algebra.

PROPOSITION 4.6. If every element of a BCC-algebra X is an atom and A is an ideal of X then every element of the quotient algebra X/Ais also atom.

Proof. Let X a BCC-algebra contains only atoms and let A be an ideal of X. Then the quotient algebra $X/A = \{C_x : x \in X\}$, where $C_x = \{y \in X : y * x, x * y \in A\}$, is a BCC-algebra (cf. [7]) with respect to the operation $C_x * C_y = C_{x*y}$. We show that each element in X/A is an atom. Suppose that for $C_x \in X/A$ there exists $C_y \in X/A$ such that $C_y \leq C_x$. Then $C_y * C_x = C_0$, i.e., $C_{y*x} = C_0$ which implies y * x = 0. Thus $y \leq x$, whence y = x or y = 0 because x is an atom. Hence $C_y = C_x$ or $C_y = C_0$. So C_x is an atom of X/A.

REFERENCES

- I.M.Dudek and W.A.Dudek: Remarks on BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka, 2 (1996), 63–70.
- [2] W.A.Dudek: On BCC-algebras, Logique et Analyse 129-130 (1990), 103-111.
- [3] W.A.Dudek: On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137–150.
- [4] W.A.Dudek: Remarks on the axioms system for BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka, 2 (1996), 46–61.

254

- [5] W.A.Dudek: Unsolved problems in BCK-algebras, East Asian Math. J. 17 (2001), 115–128.
- [6] W.A.Dudek and X.H.Zhang: On atoms in BCC-algebras, Discussiones Math. 15 (1995), 81-85.
- [7] W.A.Dudek and X.H.Zhang: On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), 21–29.
- [8] W.A.Dudek and X.H.Zhang: Initial segments in BCC-algebras, Math. Moravica 4 (2000), 27–34.
- [9] Y.Imai and K.Iséki: On axiom system of propositional calculi XIV, Poc. Japan Acad. 42 (1966), 19–22.
- [10] K.Iséki: An algebra related with a prepositional calcuus, Proc. Japan Acad. 42 (1966), 26–29.
- [11] K.Iséki: On BCI-algebras, Math. Sem. Notes, 8 (1980), 125-130.
- [12] K.Iséki and S.Tanaka: Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351–366.
- [13] K.Iséki and S.Tanaka: An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1–26.
- [14] Y.Komori: The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13–16.
- [15] Y.Komori: The class of BCC-algebras is not variety, Math. Japon. 29 (1984), 391–394.
- [16] J.Meng and J.B.Jun: BCK-algebras, Kyungmoonsa, Seoul 1994.
- [17] A.Wroński: BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211–213.

B. Karamdin
Department of Mathematics
University of the Punjab, Quaid-e-Azam Campus
Lahore-54590, Pakistan
E-mail: ayeshafatima5@hotmail.com

S. A. Bhatti

Department of Mathematics University of Education Township Campus Lahore-54590, Pakistan