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IDEALS AND BRANCHES OF BCC-ALGEBRAS

Bushra Karamdin and Shaban Ali Bhatti

Abstract. Basic properties of branches of weak BCC-algebras
and ideals of BCC-algebras containing only atoms are described.

1. Introduction

In 1966, Y. Imai and K. Iséki defined two classes of algebras of type
(2,0) called BCK-algebras and BCI-algebras [9, 10]. K. Iséki posed an
interesting problem whether the class of BCK-algebras form a variety.
A. Wroński [17] solved this problem and proved that BCK-algebras
do not form a variety. In connection with this problem Y. Komori
introduced in [14] a notion of BCC-algebras which is a generalization
of a notion of BCK-algebras and proved that the class of all BCC-
algebras is not a variety, but the variety generated by BCC-algebras,
that is the smallest variety containing the class of all BCC-algebras,
is finitely based [14]. W. A. Dudek [3] redefined the notion of BCC-
algebras by using a dual form of the ordinary definition. Further study
of BCC-algebras was continued in [1, 4, 6, 7, 8]. some open - rather
hard - problems are posed in [5].

In this short note we describe basic properties of branches in BCC-
algebras and ideals of BCC-algebras containing only atoms.

2. Preliminaries

Definition 2.1. A weak BCC-algebra X is an abstract algebra
(X, ∗, 0) of type (2, 0) satisfying the following axioms
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(i) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(ii) x ∗ x = 0,

(iii) x ∗ 0 = x,
(iv) x ∗ y = y ∗ x = 0 −→ x = y.

A weak BCC-algebra satisfying the identity

(v) 0 ∗ x = 0,

is called a BCC-algebra. A BCC-algebra with the condition

(vi) (x ∗ (x ∗ y)) ∗ y = 0

is called a BCK-algebra.
One can prove (see [2, 3] or [17]) that a BCC-algebra is a BCK-

algebra iff it satisfies the identity

(vii) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

An algebra (X, ∗, 0) of type (2, 0) satisfying the axioms (i), (ii), (iii),
(iv) and (vi) is called a BCI-algebra. A BCI-algebra satisfies also (vii)
(cf. [11]). A weak BCC-algebra is a BCI-algebra iff it satisfies (vii).

A (weak) BCC-algebra which is not a BCK-algebra (respectively,
BCI-algebra) is called proper. A proper BCC-algebra has at least four
elements. Moreover, for every n ≥ 4 there exists at least one proper
BCC-algebra (cf. [2, 3]). Analogous result are valid for weak BCC-
algebras (cf. [4]).

In all these algebras one can defined a natural partial order ≤
putting

x ≤ y ←→ x ∗ y = 0.

In all BCC/BCK-algebras we have 0 ≤ x for every x ∈ X. Moreover,
from (i) it follows that in any (weak) BCC-algebra

(1) x ≤ y −→ x ∗ z ≤ y ∗ z,

(2) x ≤ y −→ z ∗ y ≤ z ∗ x

for all x, y, z ∈ X.
In BCC-algebras we also have

(3) x ∗ y ≤ x

for all x, y ∈ X (cf. [3]).
We say that two elements x, y ∈ X are comparable if x ≤ y or

y ≤ x. An algebra X is linearly ordered if each its two elements are
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comparable. A linearly ordered weak BCC-algebra (BCI-algebra) is a
BCC-algebra (BCK-algebra, respectively).

The set of all elements comparable with 0, i.e., the set

B(X) = {x ∈ X | 0 ≤ x}

is called a BCK-part of BCI-algebra X.

3. Branches and atoms

Definition 3.1. An element a of a weak BCC-algebra X is called
an atom if x ≤ a implies x = 0 or x = a. The set of all atoms is
denoted by A(X).

Lemma 3.1. (cf. [6]) If a ̸= b are non-zero atoms of a BCC-algebra
X then a ∗ b = a.

Note that in fact this lemma is valid also in the case when a = 0 or
b = 0. Moreover, from this lemma it follows that the set of all atoms
of a given BCC-algebras is its subalgebra. For weak BCC-algebras it
is not true (see Example 3.1 below).

The set

B(a) = {x ∈ X|a ≤ x}
where a is an atom of X, is called a branch of X. An element a is
called initial for B(a). In the case when there exists an b ̸= a such
that B(a) ⊂ B(b) we say that a branch B(a) is improper. So, a branch
B(a) is proper if no b ∈ X such that b ̸= a and b ≤ a. The set of all
initial elements of proper branches of X is denoted by I(X). Obviously
I(X) ⊂ A(X).

Example 3.1. Consider on the set X = {0, a, b, c} two operations
defined by the following tables:

∗ 0 a b c
0 0 0 b b
a a 0 b b
b b b 0 0
c c c a 0

Table 1

∗ 0 a b c
0 0 0 b b
a a 0 c c
b b b 0 0
c c c a 0

Table 2

r
r

r
r

0

a

b

c
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Algebras (X, ∗, 0) defined by these two tables are proper weak BCC-
algebras (cf. [4]). In these algebras we have A(X) = {0, a, b}, B(0) =
{0, a}, B(a) = {a}, B(b) = {b, c}, I(X) = {0, b}. The branches
B(0) and B(b) are proper, the branch B(a) is improper. I(X) is a
subalgebra in both these algebras, but A(X) is a subalgebra only in
the algebra defined by Table 1.

Example 3.2. Consider on the set X = {0, a, b, c} two operations
defined by the following tables:

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b b 0 a
c c c a 0

Table 3

raJ
J

­
­

rb r c
r
0

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c a 0

Table 4

r
0

J
J

­
­

ra r b­
­

J
J
rc

Algebras (X, ∗, 0) defined by these tables are proper BCC-algebras
(cf. [3]). In these algebras B(0) = B(X) = X and I(X) = {0}.
No other proper branches. The algebra defined by Table 3 has one
improper branch B(a) = {a, b, c}, the algebra defined by Table 4 has
two improper branches: B(a) = {a, c} and B(b) = {b, c}.

Definition 3.2. A nonempty subset A of a weak BCC-algebra
X is called a chain if each its two elements are comparable. A chain
initiated by a is denoted by C(a). In the case B(a) = C(a) we say also
that B(a) is a linear branch. A branch containing only one element is
called trivial. A branch which has at least two incomparable elements
and is the set-theoretic union at least two chains is called expanded.

Each BCC-algebra is a linear or expanded branch. A BCC-algebra
defined by Table 3 is a set-theoretic union of two chains: C1(0) =
{0, a, b} and C2(0) = {0, a, c}. A branch B(a) is a union of chains
C1(a) = {a, b} and C2(a) = {b, c}. A BCC-algebra defined by Table
4 is a union of chains C1(0) = {0, a, c} and C2(0) = {o, b, c}. Weak
BCC-algebras defined in Example 3.1 have two linear branches: B(0)
and B(b).

Definition 3.3. A BCC-algebra X is called
implicative if x ∗ (y ∗ x) = x,
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positive implicative if (x ∗ y) ∗ y = x ∗ y,
commutative if x ∧ y = y ∧ x

holds for all x, y ∈ X, where x ∧ y = y ∗ (y ∗ x).

Example 3.3. Consider on the set X = {0, a, b, c} two operations
defined by the following tables:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 a
c c c c 0

Table 5

ra
­
­

rb r cr
0

∗ 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

Table 6

r
0

J
J

­
­

ra rbrc

The algebra defined by Table 5 is a positive implicative proper
BCC-algebra (Table 12 in [3]) which is not implicative and commu-
tative. The algebra defined by Table 6 is a commutative, positive
implicative and implicative BCC-algebra in which all elements are
atoms (see our Proposition 4.5 and Corollary 4.3).

Proposition 3.1. If a is an atom of a BCC-algebra X then a∗x = a
for every x ̸∈ B(a).

Proof. Indeed, by (3) for every x ∈ X we have a ∗ x ≤ a whence
we conclude a ∗ x = 0 or a ∗ x = a. The first is impossible because
x ̸∈ B(a). So, a ∗ x = a.

Corollary 3.1. [6] If a ̸= b are atoms of a BCC-algebra, then
a ∗ b = a.

Proposition 3.2. An element a of a weak BCC-algebra is its initial
element if and only if 0 ∗ (0 ∗ a) = a.

Proof. Indeed, for any element a ∈ X we have (0 ∗ (0 ∗ a)) ∗ a =
((a ∗ a) ∗ (0 ∗ a)) ∗ (a ∗ 0) = 0, i.e., 0 ∗ (0 ∗ a) ≤ a. Hence, if a is initial,
then 0 ∗ (0 ∗ a) = a.

Conversely, let 0 ∗ (0 ∗ a) = a for some a ∈ X. If z ≤ a, then
z ∗ a = 0 and a ∗ z = (0 ∗ (0 ∗ a)) ∗ z = ((z ∗ a) ∗ (0 ∗ a)) ∗ (z ∗ 0) = 0.
Thus a ∗ z = z ∗ a = 0. Therefore z = a. So, a ∈ I(X).

Proposition 3.3. Let X be a weak BCC-algebra. B(a)∩B(b) = ϕ
for distinct a, b ∈ I(X).
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Proof. If B(a)∩B(b) ̸= ϕ, then there exists at leas one x ∈ B(a)∩
B(b). Let x0 = 0∗(0∗x). Obviously x0 = 0∗(0∗x) = (x∗x)∗(0∗x) ≤
(x ∗ 0) = x, i.e., x0 ≤ x. If z ≤ x0 for some z ∈ X, then z ∗x0 = 0 and
z ∗ x = 0. So, x0 ∗ z = (0 ∗ (0 ∗ x)) ∗ z = ((z ∗ x) ∗ (0 ∗ x)) ∗ (z ∗ 0) = 0.
Therefore z = x0. This means that x0 is an initial element of X. Since
b ≤ x, we have x0 = 0 ∗ (0 ∗ x) = (b ∗ x) ∗ (0 ∗ x) ≤ b ∗ 0 = b, which
implies x0 = b because b is initial. Similarly x0 = a. Whence a = b,
which is impossible.

Corollary 3.2. Comparable elements are contained in the same
branch.

Proof. Letx, y ∈ X be comparable. Without loss of generality we
can assume that x ≤ y. Then x ∈ B(a) for some a ∈ I(X). Thus
a ≤ x ≤ y which implies y ∈ B(a).

Proposition 3.4. x ∗ y, y ∗ x ∈ B(X) for any two comparable
elements x and y of a weak BCC-algebra X.

Proof. Let x and y be comparable. Then x ≤ y or y ≤ x. Suppose
x ≤ y. Then x∗y = 0 ∈ B(X) and x∗x ≤ y∗x by (1). Thus 0 ≤ y∗x,
i.e., y ∗ x ∈ B(X).

Proposition 3.5. A BCK algebra X is positive implicative iff x ∗
y = z ⇒ z ∗ y = z.

Proof. If X is positive implicative then (x∗y)∗y = x∗y let x∗y = z
then (x ∗ y) ∗ y = x ∗ y ⇒ z ∗ y = z.

Conversely, suppose that x ∗ y = z ⇒ z ∗ y = z. Then (x ∗ y) ∗ y =
z ∗ y = z = x ∗ y. Hence X is positive implicative.

4. Ideals

Definition 4.1. Let X be a BCC-algebra. A subset A ⊂ X con-
taining 0 is called

a BCK-ideal if y, x ∗ y ∈ A imply x ∈ A,
a BCC-ideal if y, (x ∗ y) ∗ z ∈ A imply x ∗ z ∈ A,
a strong BCC-ideal if y, (x ∗ y) ∗ z ∈ A imply x ∈ A.

Every BCC-ideal is a BCK-ideal. The converse is not true [7].
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Proposition 4.1. If A is a strong BCC-ideal of a BCC-algebra X,
then y ∈ A and x ≤ y imply x ∈ A.

Proof. Indeed, x ≤ y and y ∈ A imply x ∗ y = 0 ∈ A. So, (x ∗
y) ∗ 0, y ∗ 0 ∈ A by (iii). This, according to the definition of a strong
BCC-ideal, gives x ∈ A.

Proposition 4.2. Every strong BCC-ideal is a BCC-ideal.

Proof. Let y, (x ∗ y) ∗ z ∈ A, where A is a strong BCC-ideal. Then
x ∈ A, whence by (3) and Proposition 4.1, we obtain x ∗ z ∈ A. So,
A is a BCC-ideal.

Proposition 4.3. If every element of a BCC-algebra X is an atom
then every subset of X containing 0 is a subalgebra and a BCK-ideal
of X. In this case X is a BCK-algebra.

Proof. Let A be a subset of X containing 0. If 0, x ∈ A, where
x ̸= 0, then 0 ∗ x, x ∗ 0 ∈ A by (iii) and (v). If x, y ∈ A are non-zero
atoms, then x ∗ y = x, by Lemma 3.1. Hence x ∗ y ∈ A and so A is a
subalgebra of X. Now, if x, y ∗x ∈ A for some x, y ∈ X, then y ∗x = 0
or y = y ∗ x ∈ A because y ∗ x ≤ y (by 3) and y is an atom. In the
case y ∗ x = 0 we have y ≤ x which implies y = 0 or y = x. So, in any
case y ∈ A. Thus A is a BCK-ideal of X. The rest is a consequence
of Corollary 8 from [6].

Proposition 4.4. In a BCC-algebra containing only atoms each
BCC-ideal is strong.

Proof. Let A be a BCC-ideal of a BCC-algebra X and let y, (x ∗
y) ∗ z ∈ A for some x, y, z ∈ A. Then x ∗ z ∈ A, whence, by Lemma
3.1, we conclude x ∈ A.

As a consequence of the above results we obtain

Corollary 4.1. In a BCC-algebra containing only atoms the fol-
lowing conditions are equivalent:

a) 0 ∈ A,
b) A is a subalgebra,
c) A is a BCC-ideal,
d) A is a BCK-ideal,
e) a is a strong BCC-ideal.
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Comparing this corollary with Theorem 3 from [6] we have

Corollary 4.2. A BCC-algebra contains only atoms iff each of
its subalgebra is a BCC-ideal.

Proposition 4.5. A BCC-algebra containing only atoms is a pos-
itive implicative and commutative BCK-algebra.

Proof. Since each element of X is an atom of X, so by Lemma
3.1 for all x, y ∈ X we have x ∗ y = x. Hence (x ∗ y) ∗ y = x ∗ y,
i.e., X is positive implicative. Moreover x ∗ (x ∗ y) = x ∗ x = 0 and
y ∗ (y ∗ x) = y ∗ y = 0. Thus X is commutative. The rest is a
consequence of Corollary 8 from [6].

As a consequence of the above result and Theorem 6.2 from [16] we
obtain

Corollary 4.3. A BCC-algebra containing only atoms is an im-
plicative BCK-algebra.

Proposition 4.6. If every element of a BCC-algebra X is an atom
and A is an ideal of X then every element of the quotient algebra X/A
is also atom.

Proof. Let X a BCC-algebra contains only atoms and let A be an
ideal of X. Then the quotient algebra X/A = {Cx : x ∈ X}, where
Cx = {y ∈ X : y∗x, x∗y ∈ A}, is a BCC-algebra (cf. [7]) with respect
to the operation Cx ∗ Cy = Cx∗y. We show that each element in X/A
is an atom. Suppose that for Cx ∈ X/A there exists Cy ∈ X/A such
that Cy ≤ Cx. Then Cy ∗ Cx = C0, i.e., Cy∗x = C0 which implies
y ∗ x = 0. Thus y ≤ x, whence y = x or y = 0 because x is an atom.
Hence Cy = Cx or Cy = C0. So Cx is an atom of X/A.

REFERENCES

[1] I.M.Dudek and W.A.Dudek: Remarks on BCI-algebras, Prace Naukowe WSP
w Czestochowie, ser. Matematyka, 2 (1996), 63–70.

[2] W.A.Dudek: On BCC-algebras, Logique et Analyse 129-130 (1990), 103–111.
[3] W.A.Dudek: On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20

(1992), 137–150.
[4] W.A.Dudek: Remarks on the axioms system for BCI-algebras, Prace Naukowe

WSP w Czestochowie, ser. Matematyka, 2 (1996), 46–61.



Ideals and branches of BCC-algebras 255

[5] W.A.Dudek: Unsolved problems in BCK-algebras, East Asian Math. J. 17
(2001), 115–128.

[6] W.A.Dudek and X.H.Zhang: On atoms in BCC-algebras, Discussiones Math.
15 (1995), 81-85.

[7] W.A.Dudek and X.H.Zhang: On ideals and congruences in BCC-algebras,
Czechoslovak Math. J. 48(123) (1998), 21– 29.

[8] W.A.Dudek and X.H.Zhang: Initial segments in BCC-algebras, Math. Morav-
ica 4 (2000), 27–34.
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[13] K.Iséki and S.Tanaka: An introduction to the theory of BCK-algebras, Math.

Japon. 23 (1978), 1–26.
[14] Y.Komori: The variety generated by BCC-algebras is finitely based, Reports

Fac. Sci. Shizuoka Univ. 17 (1983), 13–16.
[15] Y.Komori: The class of BCC-algebras is not variety, Math. Japon. 29 (1984),

391–394.
[16] J.Meng and J.B.Jun: BCK-algebras, Kyungmoonsa, Seoul 1994.
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