DOI QR코드

DOI QR Code

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop (Pyunghwa Institute of Construction Technology) ;
  • Kim, Nam-Il (Department of Civil and Environmental Engineering, Myongji University) ;
  • Shin, Dong Ku (Department of Civil and Environmental Engineering, Myongji University)
  • Received : 2006.10.13
  • Accepted : 2007.08.31
  • Published : 2007.10.25

Abstract

The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Keywords

References

  1. ABAQUS (2003), Standard User's Manual, Ver. 6.1, Hibbit, Karlsson & Sorensen Inc.
  2. ASCE (1984), Structural Plastics Design Manual, American Society of Civil Engineering Manuals and Reports on Engineering Practice.
  3. Asp, E. L., Berglund, A. L. and Talreja, R. (1996),"Prediction of matrix-initiated transverse failure in polymer composites", Compos. Sci. Tech., 56, 1089-1097. https://doi.org/10.1016/0266-3538(96)00074-7
  4. Bond, I., Hucker, M., Weaver, P., Bleay, S. and Haq, S. (2002),"Mechanical behavior of circular and triangular glass fibers and their composites", Composites Science and Technology, 62, 1051-1061. https://doi.org/10.1016/S0266-3538(02)00035-0
  5. Botelho, C. E., Figiel, L., Rezende, C. M. and Lauke, B. (2003),"Mechanical behavior of carbon fiber reinforced polyamide composites", Compos. Sci. Tech., 63, 1843-1855. https://doi.org/10.1016/S0266-3538(03)00119-2
  6. Chambers, E. R. and Mosallam, A. S. (1994),"Design basis for creep composites structures", Proceedings of the Third Materials Engineering Conference, San Diego, November.
  7. Findley, N. W. (1960),"Mechanism and mechanics of creep of plastics", SPE Journal, January, 57-65.
  8. Findley, N. W. and Khosla, G. (1955),"Application of the superposition principle and theories of mechanical equation of state, strain, and time hardening to creep of plastics under changing loads", J. Appl. Phy., 26, 821-832. https://doi.org/10.1063/1.1722102
  9. Findley, N. W., Lai, S. J. and Onaran, K. (1989), Creep and Relaxation on Nonlinear Viscoelastic Materials, Dover Publications Inc., New York.
  10. Findley, N. W. and Tracy, F. J. (1974),"16-year creep of polyethylene and PVC", Polymer Eng. Sci., 14, 577-580. https://doi.org/10.1002/pen.760140807
  11. Flugge, W. (1975), Viscoelasticity, 2nd edition, Springer-Verlag, New York.
  12. Gu, W., Wu, F. H., Kampe, L. S. and Lu, Q. G. (2000),"Volume fraction effects on interfacial adhesion strength of glass-fiber-reinforced polymer composites", Mater. Sci. Eng., 277, 237-243. https://doi.org/10.1016/S0921-5093(99)00528-6
  13. Jung, S. Y. (2006),"Static and viscoelastic investigation of FRP highway bridge deck systems and identification of potential problems", Ph. D. Thesis, University at Buffalo, The State University of New York.
  14. Kesler, O., Crews, K. L. and Gibson J. L. (2003),"Creep of sandwich beams with metallic foam cores", Mater. Sci. Eng. A, 341, 264-272. https://doi.org/10.1016/S0921-5093(02)00239-3
  15. Kok, M. M. J. and Meijer, E. H. H. (1999),"Deformation, yield and fracture of unidirectional composites in transverse loading; 1. Influence of fiber volume fraction and test-temperature", Compos. Part A: Appl. Sci. Manufacturing, 30, 905-916. https://doi.org/10.1016/S1359-835X(98)00170-5
  16. Liao, K., Schultheisz, R. C. and Hunston, L. D. (1999),"Long-term environmental fatigue of pultruded glassfiber- reinforced composites under flexural loading", Int. J. Fatigue, 21, 485-495. https://doi.org/10.1016/S0142-1123(98)00088-7
  17. Ma, C. C. M., Tai, N. H., Wu, S. H., Lin, S. H., Wu, J. F. and Lin, J. M. (1997),"Creep behavior of carbon-fiber- reinforced polyetherretherketone (PEEK) [+-45]4s laminated composites (I)", Compos.: Part B, 28, 407-417. https://doi.org/10.1016/S1359-8368(96)00059-5
  18. Marquardt, W. D. (1963),"An algorithm for least-squares estimation of nonlinear parameters", J. Society Indus. Appl. Mathematics, 11, 431-441. https://doi.org/10.1137/0111030
  19. McClure, G. and Mohammadi, Y. (1995),"Compression creep of pultruded E-glass-reinforced-plastic angles", J. Mater. Civ. Eng., 7, 269-276. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:4(269)
  20. Mosallam, A. S. and Bank, C. L. (1991),"Creep and recovery of a pultruded FRP frame", Advanced Composites Materials in Civil Engineering Structures: Proceedings of the specialty conference, Las Vegas, January.
  21. Mottram, J. T. (1993),"Short- and long term structural properties of pultruded beam assemblies fabricated using adhesive bonding", Compos. Struct., 25, 387-395. https://doi.org/10.1016/0263-8223(93)90186-T
  22. Plastic Design Library (1991), The Effect of Creep and Other Time Related Factors on Plastics, William Andrew, Inc.
  23. Qiao, P., Zou, G. and Davalos, F. J. (2003),"Flexural-torsional buckling of fiber-reinforced plastic composite cantilever I-beams", Compos. Struct., 60, 205-217. https://doi.org/10.1016/S0263-8223(02)00304-5
  24. Timoshenko, P. S. and Gere, M. S. (1961), Theory of Elastic Stability, 2nd edition, McGraw-Hill, New York.
  25. Ye, S. B., Svenson, L. A. and Bank, L. (1995),"Mass and volume fraction properties of pultruded class fiberreinforced composites", Composites, 26, 725-731. https://doi.org/10.1016/0010-4361(95)91140-Z

Cited by

  1. Time-dependent analysis of slender, tapered reinforced concrete columns vol.36, pp.2, 2007, https://doi.org/10.12989/scs.2020.36.2.229