DOI QR코드

DOI QR Code

Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

  • Aquino, Wilkins (School of Civil and Environmental Engineering, Cornell University) ;
  • Erdem, Ibrahim (School of Civil and Environmental Engineering, Cornell University)
  • Received : 2006.07.08
  • Accepted : 2007.01.17
  • Published : 2007.08.25

Abstract

A finite element implementation of the modified compression field theory (MCFT) using a tangential formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated mainly on secant formulations. This work describes details of the implementation of a modular algorithmic structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated using experimental and analytical data reported in the literature. The developed algorithm, which converges accurately and quickly, can be easily implemented in any finite element code.

Keywords

References

  1. Bathe, K. J. (1996), Finite Element Procedures, Prentice Hall.
  2. Bazant, Z. P. and Cedolin, L. (1991), Stability of Structures, Oxford University Press.
  3. Belarbi, A. and Hsu, T. T. C. (1995),"Constitutive laws of softened concrete in biaxial tension-compression", ACI Struct. J., 92(5), 562-573.
  4. Belytschko, T., Liu, W. K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, Wiley.
  5. Bentz, E. C. (2000),"Sectional analysis of reinforced concrete members", Ph.D, Civil Engineering, University of Toronto, PhD, Civil Engineering, University of Toronto, Toronto, CA.
  6. Bentz, E. C., Vecchio, F. J. and Collins, M. P. (2006),"Simplified modified compression field theory for calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614-624.
  7. Bhide, S. B. and Collins, M. P. (1987), Reinforced Concrete Elements in Shear and Tension, University of Toronto: Toronto, CA.
  8. Bontempi, F. and Malerba, P. G. (1997),"The role of softening in the numerical analysis of RC framed structures", Struct. Eng. Mech., 5(6), 785-801. https://doi.org/10.12989/sem.1997.5.6.785
  9. Chan, C. C. L. (1989),"Testing of reinforced concrete membrane elements with perforations", M.S., Civil Engineering, University of Toronto, Toronto, CA.
  10. Cook, W. D. and Mitchell, D. (1988),"Studies of disturbed regions near discontinuities in reinforced concrete members", ACI Struct. J., 85(2), 207-216.
  11. Crisfield, M. A. (1991), Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1. Wiley.
  12. Hsu, T. T. C. (1991),"Nonlinear-analysis of concrete membrane elements", ACI Struct. J., 88(5), 552-561.
  13. Hsu, T. T. C. and Zhang, L. X. (1997),"Nonlinear analysis of membrane elements by fixed-angle softened-truss model", ACI Struct. J., 94(5), 483-492.
  14. Imran, I. and Pantazopoulou, S. J. (2001),"Plasticity model for concrete under triaxial compression", J. Eng. Mech., ASCE, 127(3), 281-290. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281)
  15. Lee, J. and Fenves, G. L. (2001),"A return-mapping algorithm for plastic-damage models: 3-D and plane stress formulation", Inter. J. Numer. Methods Eng., 50(2), 487-506. https://doi.org/10.1002/1097-0207(20010120)50:2<487::AID-NME44>3.0.CO;2-N
  16. Lee, J. H. and Fenves, G. L. (1998),"Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., ASCE, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  17. Mitchell, D. and Collins, M. P. (1974),"Diagonal compression field theory-a rational model for structural concrete in pure torsion", ACI J., 71(8), 396-408.
  18. Ortiz, M., Leroy, Y. and Needleman, A. (1987),"A finite-element method for localized failure analysis", Comput. Methods Appl. Mech. Eng., 61(2), 189-214. https://doi.org/10.1016/0045-7825(87)90004-1
  19. Palermo, D. and Vecchio, F. J. (2002),"Behavior of three-dimensional reinforced concrete shear walls", ACI Struct. J., 99(1), 81-89.
  20. Pang, X. B. D. and Hsu, T. T. C. (1995),"Behavior of reinforced concrete membrane elements in shear", ACI Struct. J., 92(6), 665-679.
  21. Pang, X. B. D. and Hsu, T. T. C. (1996),"Fixed angle softened truss model for reinforced concrete", ACI Struct. J., 93(2), 197-207.
  22. Polak, M. A. and Vecchio, F. J. (1993),"Nonlinear-analysis of reinforced-concrete shells", J. Struct. Eng., ASCE, 119(12), 3439-3462. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3439)
  23. Stevens, N. J., Uzumeri, S. M., Collins, M. P. and Will, G. T. (1991),"Constitutive model for reinforced-concrete finite-element analysis", ACI Struct. J., 88(1), 49-59.
  24. Vecchio, F. J. (1989),"Nonlinear finite-element analysis of reinforced-concrete membranes", ACI Struct. J., 86(1), 26-35.
  25. Vecchio, F. J. (1990),"Reinforced concrete membrane element formulations", J. Struct. Eng., ASCE, 116(3), 730-750. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(730)
  26. Vecchio, F. J. (1992),"Finite-element modeling of concrete expansion and confinement", J. Struct. Eng., ASCE, 118(9), 2390-2406. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2390)
  27. Vecchio, F. J. and Collins, M. P. (1986),"The modified compression-field theory for reinforced-concrete elements subjected to shear", J. American Concrete Institute, 83(2), 219-231.
  28. Vecchio, F. J. and Selby, R. G. (1991),"Toward compression-field analysis of reinforced-concrete solids", J. Struct. Eng., ASCE, 117(6), 1740-1758. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1740)
  29. Wang, T. J. and Hsu, T. T. C. (2001),"Nonlinear finite element analysis of concrete structures using new constitutive models", Compos. Struct., 79(32), 2781-2791. https://doi.org/10.1016/S0045-7949(01)00157-2
  30. Zhou, C. E. and Vecchio, F. J. (2005),"Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads", Compos. Concrete, 2(6), 455-479. https://doi.org/10.12989/cac.2005.2.6.455

Cited by

  1. Retrofitting of damaged bridges – the sustainable solution vol.20, pp.sup1, 2016, https://doi.org/10.1080/12265934.2016.1138877
  2. A Whole-Range S–N Curve for Fatigue Assessment of Steel Orthotropic Bridge Decks 2018, https://doi.org/10.1142/S0219455418400102
  3. Developing a full range S–N curve and estimating cumulative fatigue damage of steel elements vol.96, 2015, https://doi.org/10.1016/j.commatsci.2014.09.009
  4. New Combined High and Low-Cycle Fatigue Model to Estimate Life of Steel Bridges considering Interaction of High and Low Amplitudes Loadings vol.15, pp.2, 2012, https://doi.org/10.1260/1369-4332.15.2.287
  5. The Impact of the Gigacycle Fatigue on Steel Bridges vol.569, pp.None, 2007, https://doi.org/10.4028/www.scientific.net/kem.569-570.246