References
- Darllmaz, K. (2005),"An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
- Darllmaz, K. (2005),"A hybrid 8-node hexahedral element for static and free vibration analysis", Struct. Eng. Mech., 21(5), 571-590. https://doi.org/10.12989/sem.2005.21.5.571
- El Fatmi, R. and Zenzri, H. (2004),"A numerical method for the exact elastic beam theory. Applications to homogeneous and composite beams", Int. J. Solids Struct., 41, 2521-2537. https://doi.org/10.1016/j.ijsolstr.2003.12.011
- Gendy, A.S., Saleeb, A.F. and Chang, T.Y.P. (1992),"Generalized thin-walled beam models for flexural-torsional analysis", Comput. Struct., 42(4), 531-550. https://doi.org/10.1016/0045-7949(92)90120-O
- Krenk, S. and Jeppesen, B., (1989),"Finite Elements for beam cross-sections of moderate wall thickness", Comput. Struct., 32(5), 1035-1043. https://doi.org/10.1016/0045-7949(89)90405-7
- Kolodziej, J.A. and Fraska, A. (2005),"Elastic torsion of bars possessing regular polygon in cross-section using BCM", Comput. Struct., 84, 78-91. https://doi.org/10.1016/j.compstruc.2005.03.015
- Ladeveze, P. and Simmonds, J.G., (1998),"New concepts for linear beam theory with arbitrary geometry and loading", European J. Mech., A/Solids, 17(3), 377-402. https://doi.org/10.1016/S0997-7538(98)80051-X
- Lekhnitskii, S.T. (1963), Theory of Elasticity an Anisotropic Elastic Body., Holden day, San Francisco.
- Li, Z., Ko, J.M. and Ni, Y.Q. (2000),"Torsional rigidity of reinforced concrete bars with arbitrary sectional shape", Finite Elements in Analysis and Design, 35, 349-361. https://doi.org/10.1016/S0168-874X(99)00075-X
- Muskhelishvili, N.I. (1963), Some Basic Problems of the Mathematical Theory of Elasticity, Noordho International Publishing, Leyden.
- Najera, A., Herrera, J.M. (2005),"Torsional rigidity of non-circular bars in mechanisms and machines", Mechanism and Machine Theory, 40, 638-643. https://doi.org/10.1016/j.mechmachtheory.2004.07.012
- Pian, T.H.H. and Chen, D.P. (1982),"Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meths. Eng., 18, 1679-1684. https://doi.org/10.1002/nme.1620181107
- Swanson, S.R. (1998),"Torsion of laminated rectangular rods", Compos. Struct., 42, 23-31. https://doi.org/10.1016/S0263-8223(98)00055-5
- Savoia, M. and Tullini, N., (1993),"Torsional response of inhomogeneous and multilayered composite beams", Compos. Struct., 25, 587-594. https://doi.org/10.1016/0263-8223(93)90207-7
- Timoshenko, S.P. (1968), Elements of Strength of Materials, 5th Edition, Princeton NJ, Van Nostrand.
- Washizu, K. (1982), Variational Method in Elasticity and Plasticity, Pergamon Press, Oxford, 3rd. Edn.
Cited by
- Exact determination of the global tip deflection of both close-coiled and open-coiled cylindrical helical compression springs having arbitrary doubly-symmetric cross-sections vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.022
- Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach 2017, https://doi.org/10.1007/s00707-017-2067-1
- Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM vol.57, pp.2, 2016, https://doi.org/10.12989/sem.2016.57.2.221
- On the history of torsional stress concentrations in shafts: From electrical analogies to numerical methods vol.49, pp.6, 2014, https://doi.org/10.1177/0309324714530123