References
- Asferg, J. L., Poulsen, P. N. and Nielsen, L. O. (2004), "Modeling of cohesive crack applying XFEM", 5th International PhD Symposium in Civil Engineering, Walraven, J., Blaauwendraad, J., Scarpas, T. and Snijder, B. (Eds.), pages 1261-1269.
- Barenblatt, G. I. (1962), "The mathematical theory of equilibrium of cracks in brittle fracture", Advances in Applied Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
- Bazant, Z. P. and Oh, B. H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., RILEM, 16(93), 155-177.
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless methods: an overiew and recent developments", Comput. Methods Appl. Mech. Eng., 139, 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
- Bouchard, P. O., Bay, F. and Chastel, Y. (2002), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Methods Appl. Mech. Eng., 192, 3887-3908.
- Bouchard, P. O., Bay, F., Chastel, Y. and Tovena, I. (2000), "Crack propagation modelling using an advanced remeshing technique", Comput. Methods Appl. Mech. Eng., 189, 723- 742. https://doi.org/10.1016/S0045-7825(99)00324-2
- Carpinteri, A., Valente, S., Ferrara, G. and Melchiorri, G. (1992), "Is mode II fracture energy a real material property?", Comput. Struct., 48(3), 397-413. https://doi.org/10.1107/S0108270191009496
- Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Methods Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
- Dugdale, D. S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8, 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Hillerborg, A., Modéer, M. and Peterson, P.-E (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Jirasek, M. (2000), "Comparative study on finite elements with embedded discontinuities", Comput. Methods Appl. Mech. Eng., 188, 307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
- Jirasek, M. and Belytschko, T. (2002), "Computational resolution of strong discontinuities", in: H. Mang, F. Rammerstorfer, J. Eberhardsteiner (Eds.), Proceedings of Fifth World Congress on Computational Mechanics, WCCM V, Vienna University of Technology, Austria.
- Karihaloo, B. L. (1995), Fracture Mechanics and Structural Concrete. Longman Scientific and Technial.
- Karihaloo, B. L. and Xiao, Q. Z. (2002), "Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review", Comput. Struct., 81, 119-129.
- Krenk, S. (1995), "An orthogonal residual procedure for nonlinear finite element equations", Int. J. Numer. Methods Eng., 38, 823-839. https://doi.org/10.1002/nme.1620380508
- Melenk, J. M. and Babu ka, I. (1996), "The partition of unity finite element method: basic theory and application", Comput. Methods Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Mergheim, J., Kuhl, E. and Steinmann, P. (2005) "A finite element method for the computational modeling of cohesive cracks", Int. J. Numer. Methods Eng., 63, 276-289. https://doi.org/10.1002/nme.1286
- Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Methods Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Nielsen, M. P. (1999), Limit Analysis and Concrete Plasticity. CRC Press, second editon.
- Patzak, B. and Jirasek, M. (2004), "Adaptive resolution of localized damage in quasi-brittle materials", J. Eng. Mech., 130, 720-732. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(720)
- Stang, H., Olesen, J. F., Poulsen, P. N. and Dick-Nielsen, L. (2006), "Application of the cohesive crack in cementitious materials modelling", In Meschke, G. de Borst, R. Mang, H. and Bicanic, N., Editors, Computational Modeling of Concrete Structures, 443-449, Taylor & Francis.
- Stolarska, M., Chopp, D. L, Moes, N. and Belytschko, T. (2001), "Modeling crack growth by level sets in the extended finite element method", Int. J. Numer. Methods Eng., 51, 943-960. https://doi.org/10.1002/nme.201
- Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for three dimensional crack modeling", Int. J. Numer. Methods Eng., 48, 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
- Vandewalle, L. (2000), "Test and design methods for steel fiber reinforced concret. Recommendations for bending test", Mater. Struct., 33, 3-5. https://doi.org/10.1007/BF02481689
- Wells, G. and Sluys, L. (2001), "A new method for modeling of cohesive cracks using finite elements", Int. J. Numer. Methods Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
- Zi, G. and Belytschko, T. (2003), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Methods Eng., 57, 2221-2240. https://doi.org/10.1002/nme.849
Cited by
- Arch-dam crack deformation monitoring hybrid model based on XFEM vol.54, pp.10, 2011, https://doi.org/10.1007/s11431-011-4550-6
- Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method vol.72, 2014, https://doi.org/10.1016/j.tafmec.2014.04.006
- Complete Tangent Stiffness for eXtended Finite Element Method by including crack growth parameters vol.95, pp.1, 2013, https://doi.org/10.1002/nme.4497
- Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method vol.23, pp.7, 2014, https://doi.org/10.1177/1056789513516028
- A partly and fully cracked triangular XFEM element for modeling cohesive fracture vol.85, pp.13, 2011, https://doi.org/10.1002/nme.3040
- An embedded crack in a constant strain triangle utilizing extended finite element concepts vol.117, 2013, https://doi.org/10.1016/j.compstruc.2012.11.006
- Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment vol.7, pp.4, 2007, https://doi.org/10.12989/cac.2010.7.4.303
- An embedded crack model for failure analysis of concrete solids vol.7, pp.4, 2007, https://doi.org/10.12989/cac.2010.7.4.331
- Obtaining equivalent fracture toughness of concrete using uniaxial compression test vol.7, pp.4, 2007, https://doi.org/10.12989/cac.2010.7.4.387
- A method of global-local analyses of structures involving local heterogeneities and propagating cracks vol.38, pp.4, 2011, https://doi.org/10.12989/sem.2011.38.4.529
- The continuous-discontinuous Galerkin method applied to crack propagation vol.23, pp.4, 2007, https://doi.org/10.12989/cac.2019.23.4.235
- Elastoplastic Fracture Analysis of the P91 Steel Welded Joint under Repair Welding Thermal Shock Based on XFEM vol.10, pp.10, 2020, https://doi.org/10.3390/met10101285
- Linear-elastic stress field of notched concrete beam: An application of finite element in theory of critical distances vol.1144, pp.1, 2021, https://doi.org/10.1088/1757-899x/1144/1/012037
- Analysis on mechanical characteristics of CRTSII slab ballastless track structures in rectification considering material brittleness vol.319, pp.None, 2007, https://doi.org/10.1016/j.conbuildmat.2021.126058