DOI QR코드

DOI QR Code

Antioxidant Activity and Physiological Function of the Anomala albopilosa Extracts

청동풍탱이(Anomala albopilosa)추출물의 항산화성 및 생리기능

  • Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Sang-Bum (Ohyun Middle School) ;
  • Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
  • 윤원종 ((재)제주하이테크산업진흥원 제주샘물종다양성연구소) ;
  • 이정아 ((재)제주하이테크산업진흥원 제주샘물종다양성연구소) ;
  • 김지영 ((재)제주하이테크산업진흥원 제주샘물종다양성연구소) ;
  • 김상범 (오현중학교) ;
  • 박수영 ((재)제주하이테크산업진흥원 제주샘물종다양성연구소)
  • Published : 2007.06.30

Abstract

We analyzed antioxidant and physiological activities to investigate the functional effects of ethanol extracts of Anomala albopilosa imago and A. albopilosa larva. In order to effectively screen for anti-inflammatory agents, we first investigated the antioxidant activities such as DPPH radical scavenging capacity, superoxide radical scavenging capacity, xanthine oxidase inhibitory activity, and nitric oxide scavenging capacity of the A. albopilosa extracts. By the screening system, we found that A. albopilosa extracts had antioxidant activity which increased with increments of the extract concentration. Moreover, we examined the inhibitory effect of the A. albopilosa extracts on the production of anti-inflammatory factors that the nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostaglandin $E_2\;(PGE_2)$ production activated with LPS ($1{\mu}g/mL$) in murine macrophage cell line RAW 264.7. A. albopilosa extracts potentially inhibited the iNOS and COX-2 in a dose-dependent manner. The inhibition of iNOS activity was correlated with the decrease in nitrite levels. Additionally, the $PEG_2$ production is markedly inhibited after a treatment with the A. albopilosa extracts.

산화적인 스트레스(oxidative stress)는 신경염증의 발병 요인 중의 하나로 알려져 있다. 이에 본 연구는 약용곤충으로 알려진 청동풍뎅이(Anomala albopilosa) 성충과 3령 유충(궁벵이) 에탄올 추출물을 대상으로 항산화활성을 비교 측정하였으며, 또한 대식세포인 RAW 264.7 세포에서의 NO 의 생성억제 효과 및 세포독성 그리고 분자 염증관련 인자인 iNOS, COX-2와 $PGE_2$ 생성 및 활성 억제를 조사하여 항염 증효과 등의 생리활성을 측정 비교하였다. 우선, 분자염증은 활성산소 관련의 물질과 밀접한 관련이 있으므로 향산화 실험과 관련하여 청동풍탱이 성충과 3령 유충 에탄올 추출물 의 DPPH(1,1-diphenyl-2-picrylhydrazyl) radical 소거능, superoxide radical 소거능, xanthine oxidase 저해활성 그리고 nitric oxide 소거능에 대한 항산화활성 등의 assay를 실시하였다. 그 결과, 청동풍뎅이 에탄올 추출물은 항산화능을 갖고 있었으며, 3령 유충 추출물에서보다는 성충 추출물에서 다소 높은 항산화활성을 보여주었다. 또한 RAW 264.7 세포에 LPS로 자극을 주고 청동풍뎅이 성충과 3령 유충 에탄올 추출물을 처리하여 항염증관련 활성을 확인해본 결과, 고농도에서는 다소 세포독성을 나타냈지만 농도의존적으로 NO, iNOS, COX-2 그리고 $PGE_2$의 생성 억제효과가 나타났다. 이러한 결과는 유용곤충자원을 이용한 유효성분 추출을 통한 항산화 및 항염증 물질의 연구 또는 예방하거나 치료할수 있는 염증 억제 성분의 분리 및 그 작용기전 연구에 중요한 기초 자료가 될 것이라 사료된다.

Keywords

References

  1. Park KT, Lee JS. 1998. Review on insect resources for medical use in Kangwon province. Kor J Apiculture 13: 79-92
  2. Park JY, Heo JC, An SM, Yun EY, Han SM, Hwang JS, Kang SW, Yun CY, Lee SH. 2005. High throughput-compatible screening of anti-oxidative substances by insect extract library. Korean J Food Preserv 12: 482-488
  3. Kang I, Kim H, Chung C, Kim S, Oh D. 2000. Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in ethanol administered rats. J Korean Soc Food Sci Nutr 29: 479-484
  4. 박호용. 2004. 약용곤충의 효능과 처방. 한국생명공학연구원․한중생명공학협력센터. p 97-99
  5. 오창영, 등명노, 강병수, 신민교, 이장천. 2002. 동의약용동물학. 의성당, 서울. p 217-220
  6. Choi YH, Lee K, Yang MY, Jeong YM, Seo JS. 2006. Effect of larva extract of Allomyrina dichitoma on carbon tetrachloride-induced hepatotoxicity in mice. J Korean Soc Food Sci Nutr 35: 1349-1355 https://doi.org/10.3746/jkfn.2006.35.10.1349
  7. Kim JI. 2001. Economic Insects of Korea 10. COLEOPTERA (Scarabaeoidea). Nat'l Inst Agr Sci Tech. p 114-115
  8. Kim JI. 1998. Insect Life in Korea. Korea Insects Research, Korea Univ. p 65
  9. Cho BS. 1969. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 10 Insecta (II). Ministry of Education. p 676
  10. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 https://doi.org/10.1038/1811199a0
  11. Nishikimi M, Roa NA, Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46: 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  12. Fridovich I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245: 4053-4057
  13. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [$^{15}N$]nitrate in biological fluids. Anal Biochem 126: 131-136 https://doi.org/10.1016/0003-2697(82)90118-X
  14. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. 1994. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201: 748-755 https://doi.org/10.1006/bbrc.1994.1764
  15. Halliwell B. 1991. Drug antioxidant effects. A basis for drug selection. Drug 42: 569-605 https://doi.org/10.2165/00003495-199142040-00003
  16. Cheng ZJ, Kuo SC, Chan SC, Ko FN, Teng CM. 1998. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biophys Acta 1392: 291-299 https://doi.org/10.1016/S0005-2760(98)00043-5
  17. Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142
  18. Nathan C, Xie QW. 1994. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918 https://doi.org/10.1016/0092-8674(94)90266-6
  19. Jaffrey SR, Snyder SH. 1995. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol 11: 417-440 https://doi.org/10.1146/annurev.cb.11.110195.002221
  20. Lyons CR, Orloff GJ, Cunningham JM. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267: 6370-6374
  21. Liu RH, Hotchkiss JH. 1995. Potential genotoxicity of chronically elevated nitric oxide: A review. Mutat Res 339: 73-89 https://doi.org/10.1016/0165-1110(95)90004-7
  22. Rockey DC, Chung JJ, McKee CM, Noble PW. 1998. Stimulation of inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology 27: 86-92 https://doi.org/10.1002/hep.510270115
  23. Weis ZA, Cicatiello L, Esumi H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316: 209-215 https://doi.org/10.1042/bj3160209
  24. Ryu JH, Ahn H, Kim JY, Kim YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489 https://doi.org/10.1002/ptr.1180
  25. Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, Yoshida T, Yokochi T. 2001. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J Endotoxin Res 7: 431-438 https://doi.org/10.1177/09680519010070060601
  26. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. 2003. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol 160: 1025-1032 https://doi.org/10.1078/0176-1617-00831
  27. Tesuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S. 2001. Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J Ethnopharmacol 77: 209-217 https://doi.org/10.1016/S0378-8741(01)00300-2
  28. Kim RG, Shin KM, Chun SK, Ji SY, Seo SH, Park HJ, Choi JW, Lee KT. 2002. In vitro antiinflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji 46: 343- 347
  29. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. 1994. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. Proc Natl Acad Sci USA 91: 12013-12017
  30. Kim JY, Jung KS, Jeong HG. 2004. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Letters 569: 321-326 https://doi.org/10.1016/j.febslet.2004.05.070

Cited by

  1. Effect of Hydropsyche kozhantschikovi Extracts on Oxidative Stress vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.31
  2. Anti-inflammatory and Whitening Effects of Protaetia brevitarsis Seulensis Extracts by Oriental Conversion Methods vol.42, pp.4, 2016, https://doi.org/10.15230/SCSK.2016.42.4.421
  3. Pre-treatment of the White-Spotted Flower Chafer (Protaetia brevitarsis) as an Ingredient for Novel Foods vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.397
  4. Antioxidant Activity and Safety Evaluation of Juice Containing Protaetia brevitarsis vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.041
  5. Inhibitory Effect of Extract from Acanthocoris sordidus on Oxidative Damage vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1078
  6. 유용 미생물을 이용한 발효굼벵이 추출물의 이화학적 특성 및 생리활성효과 vol.28, pp.7, 2018, https://doi.org/10.5352/jls.2018.28.7.827
  7. 먹이원에 따른 흰점박이꽃무지(Protaetia brevitarsis) 유충의 항산화활성 vol.17, pp.4, 2019, https://doi.org/10.14480/jm.2019.17.4.261