Abstract
The heat transfer coefficient and pressure drop during 9as cooling process of $CO_2$ (R744) in a helically coiled copper tube with the inner diameter of 4.55 mm and outer diameter of 6.35 mm were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter a pre-heater and a helically coiled type gas cooler (test section). The refrigerant mass fluxes are varied from 200 to $800kg/m^2s$ and the inlet pressures of gas cooler are 7.5 to 10.0 MPa. The heat transfer coefficients of $CO_2$ in a helically coiled tube are higher than those in a horizontal tube. The Pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those predicted by Ito's correlation developed for single-phase in a helically coiled tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However. at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al correlation. Therefore, various experiments in helically coiled tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in a helically coiled tube.