DOI QR코드

DOI QR Code

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Gyoung-Ja (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Ju-Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2007.05.28

Abstract

This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Keywords

References

  1. Y. Teraoka, H.-M. Zhang, S. Furukawa and N. Yamazoe, Chem. Lett., 1985, 1743 (1985)
  2. Y. Teraoka, T. Nobunaga and N. Yamazoe, Chem. Lett., 1988, 503 (1998)
  3. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi and Y. Takita, J. Electrochem. Soc., 145, 3177 (1998) https://doi.org/10.1149/1.1838783
  4. M. Feng, J.B. Goodenough, K.Q. Huang and C. Milliken, J. Power Sources, 63, 47 (2000) https://doi.org/10.1016/S0378-7753(96)02441-X
  5. A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe and D. Mantzavinos, Catal. Today, 55, 197 (2000) https://doi.org/10.1016/S0920-5861(99)00239-4
  6. F. Lecarpentier, H.L. Tuller and N. Long, J. Electroceram., 5, 225 (2000) https://doi.org/10.1023/A:1026579529087
  7. S. J. Skinner, Fuel Cells Bull., 4, 6 (2001) https://doi.org/10.1016/S1464-2859(01)80254-6
  8. Z. Shao and S.M. Halie, Nature, 431, 170 (2004) https://doi.org/10.1038/nature02863
  9. H. Kruidhof, H.J.M. Bouwmeester, R.H.E.v. Doorn and A.J. Burggraaf, Solid State Ionics, 63/65, 816 (1993) https://doi.org/10.1016/0167-2738(93)90202-E
  10. V.V. Kharton, A.P. Viskup, E.N. Naumovich and N.M. Lapchuk, Solid State Ionics, 104, 67 (1997) https://doi.org/10.1016/S0167-2738(97)00397-4
  11. H. Kusaba, G. Sakai, N. Miura and N. Yamazoe, Ionics, 6, 47 (2000) https://doi.org/10.1007/BF02375546
  12. J.E. ten Eishof, H.J.M. Boumeester and H. Verweij, Appl. Catal. A : General, 130, 195 (1995) https://doi.org/10.1016/0926-860X(95)00098-4
  13. H. Wang, Y. Cong and W. Yang, Catal. Today, 82, 157 (2003) https://doi.org/10.1016/S0920-5861(03)00228-1
  14. Y. Takeda, Y. Sakaki, T. Ichikawa, N. Imanishi, O. Yamamoto, M. Mori, N. Mori and T. Abe, Solid State Ionics, 72, 257 (1994) https://doi.org/10.1016/0167-2738(94)90156-2
  15. L.-W. Tai, M.M. Nasrallah and H.U. Anderson, J. Solid State Chem., 118, 117 (1995) https://doi.org/10.1006/jssc.1995.1319
  16. J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson and W.J. Weber, J. Electrochem. Soc., 143, 2722 (1996) https://doi.org/10.1149/1.1837098
  17. V.V. Kharton, A.P. Viskup, D.M. Bochkov, E.N. Naumovich and O.P. Reut, Solid State Ionics, 110, 61 (1998) https://doi.org/10.1016/S0167-2738(98)00117-9
  18. J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi and K. Fueki, J. Electrochem. Soc., 136, 2082 (1989) https://doi.org/10.1149/1.2097187
  19. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura and N. Yamazoe, Solid State Ionics, 48, 207 (1991) https://doi.org/10.1016/0167-2738(91)90034-9
  20. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, Solid State Ionics, 76, 273 (1995) https://doi.org/10.1016/0167-2738(94)00245-N
  21. Z.Q. Deng, W.S. Yang, W. Liu and C.S. Chen, J. Solid State Chem., 179, 362 (2006) https://doi.org/10.1016/j.jssc.2005.10.027
  22. J. Mizusaki, Solid State Ionics, 52, 79 (1992) https://doi.org/10.1016/0167-2738(92)90093-5
  23. J. Hole, D. Kuscer, M. Krovat, S. Bernik and D. Kolar, Solid State Ionics, 95, 259 (1997) https://doi.org/10.1016/S0167-2738(96)00595-4
  24. H. Ullmann, N. Trofimenko, F. Tietz, D. Stover and A. Ahmad-Khanolou, Solid State Ionics, 138, 79 (2000) https://doi.org/10.1016/S0167-2738(00)00770-0
  25. M.V. Patrakeev, E.B. Mitberg, A.A. Lakhtin, I.A. Leonidov, V.L. Kozhevnikov, V.V. Kharton, M. Avdeev and F.M.B. Marques, J. Solid State Chem., 167, 203 (2002) https://doi.org/10.1006/jssc.2002.9644
  26. V.V. Kharton, J. C. Waerenborgh, A.P. Viskup, S.O. Yakovlev, M.V. Patrakeev, P. Gaczynski, I.P. Marozau, A.A. Yaremchenko, A.L. Shaula and V.V. Samakhval, J. Solid State Chem., 179, 1273 (2006) https://doi.org/10.1016/j.jssc.2006.01.037
  27. H. Nagamoto, E. Shinoda and H. Inoue, Ind. Eng. Chem. Res., 32, 1790 (1993) https://doi.org/10.1021/ie00020a037
  28. M.N. Rahaman, Ceramic Processing and Sintering, Chap. 1, Marcel Dekker, Inc., New York, 1995
  29. V.V. Kharton, A.P. Viskup, E.N. Naumovich, A.A. Tonoyan and O.P. Reut, Mater. Res. Bull., 33, 1087 (1998) https://doi.org/10.1016/S0025-5408(98)00068-3
  30. E. Maguire, B. Gharbage, F.M.B. Marques and J.A. Labrincha, Solid State Ionics, 127, 329 (2000) https://doi.org/10.1016/S0167-2738(99)00286-6
  31. L. Tan, X. Gu, L. Yang, W. Jin, L. Zhang and N. Xu, J. Membr. Sci., 212, 157 (2003) https://doi.org/10.1016/S0376-7388(02)00494-5
  32. J.B. Smith and T. Norby, Solid State Ionics, 177, 639 (2006) https://doi.org/10.1016/j.ssi.2006.01.006
  33. M. Pechini, U.S. patent 3330797, July 11 (1967)
  34. C.M. Ronconi and E.C. Pereira, J. Appl. Electrochem., 31, 319 (2001) https://doi.org/10.1023/A:1017544406347
  35. M. Mori and N.M. Sammes, Solid State Ionics, 146, 301 (2002) https://doi.org/10.1016/S0167-2738(01)01020-7
  36. A.V. Rosario and E.C. Pereira, Thin Solid Films, 410, 1 (2002) https://doi.org/10.1016/S0040-6090(02)00242-0
  37. M.C. Esteves, D. Gouvea and P.T.A. Sumodjo, Appl. Surf. Sci., 229, 24(2004) https://doi.org/10.1016/j.apsusc.2004.02.015
  38. Y.-J. Yang, T.-L. Wen, H. Tu, D.-Q. Wang and J. Yang, Solid State Ionics, 135, 475 (2000) https://doi.org/10.1016/S0167-2738(00)00402-1
  39. R. Peng, C. Xia, Q. Fu, G. Meng and D. Peng, Mater. Lett., 56, 1043 (2002) https://doi.org/10.1016/S0167-577X(02)00673-0
  40. R. Peng, X. Fan, Z. Jiang and C. Xia, Fuel Cells, 6, 455 (2006) https://doi.org/10.1002/fuce.200600009
  41. R. Chiba, F. Yoshimura, Y. Sakurai, Y. Tabata and M. Arakawa, Solid State Ionics, 175, 23 (2004) https://doi.org/10.1016/j.ssi.2004.09.039
  42. P.G. Keech, D.E. Trifan and V.I. Birss, J. Electrochem. Soc., 152, A645 (2005) https://doi.org/10.1149/1.1855875
  43. F. J. Lepe, J. Fernandez-Urban, L. Mestres and M. L. Marinz-Sarrion, J. Power Sources, 151, 74 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.087
  44. L. Tan, X. Gu, L. Yang, W. Jin, L. Zhang and N. Xu, J. Membr. Sci., 212, 157 (2003) https://doi.org/10.1016/S0376-7388(02)00494-5
  45. R.M. German, Powder Metallurgy Science, Chap. 5, Pennsylvania State University, New Jersey, 1994
  46. L.A. Chick, L.R Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos, Mater. Lett., 10, 6 (1990) https://doi.org/10.1016/0167-577X(90)90003-5
  47. T.-L. Wen, H. Tu, Z. Xu and O. Yamamoto, Solid State Ionics, 121, 25 (1999) https://doi.org/10.1016/S0167-2738(98)00378-6
  48. L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi and Y. Takeda, Solid State Ionics, 158, 55 (2003) https://doi.org/10.1016/S0167-2738(02)00757-9
  49. J. Gao, X. Liu, D. Peng and G. Meng, Catal. Today, 82, 207 (2003) https://doi.org/10.1016/S0920-5861(03)00234-7
  50. J. Pena-Martinez, D. Marrero-Lopez, D. Perez-Coll, J.C. Ruiz-Morales and P. Nunez, Electrochim. Acta, 52, 2950 (2007) https://doi.org/10.1016/j.electacta.2006.09.004
  51. H.-R. Rim, S.-K. Jeung, E. Jung and J.-S. Lee, Mater. Chem. Phys., 52, 54 (1998) https://doi.org/10.1016/S0254-0584(98)80006-0
  52. M. B. Phillipps, N. M. Sammes and O. Yamamoto, Solid State Ionics, 123, 131 (1999) https://doi.org/10.1016/S0167-2738(99)00082-X
  53. S. Lee, Y. Lim, E.A. Lee, H.J. Hwang and J.-W. Moon, J. Power Sources, 157, 848 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.028
  54. G.Ch. Kostogloudis, N. Vasilakos and Ch. Ftikos, J. Eur. Ceram. Soc., 17, 1513 (1997) https://doi.org/10.1016/S0955-2219(97)00038-1
  55. A. Petric, P. Huang and F. Tietz, Solid State Ionics, 135, 719 (2000) https://doi.org/10.1016/S0167-2738(00)00394-5
  56. K.T. Lee and A. Manthiram, J. Electrochem. Soc., 153, A794 (2006) https://doi.org/10.1149/1.2172572
  57. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov and P. Kofstad, Solid State Ionics, 80, 189 (1995) https://doi.org/10.1016/0167-2738(95)00114-L
  58. D. Mantzavinos, A. Hartley, I.S. Metcalfe and M. Sahibzada, Solid State Ionics, 134, 103 (2000) https://doi.org/10.1016/S0167-2738(00)00718-9
  59. V.V. Kharton, E.V. Tsipis, I.P. Marozau, A.P. Viskup, J.R. Frade and J.T.S. Irvine, Solid State Ionics, 178, 101 (2007) https://doi.org/10.1016/j.ssi.2006.11.012
  60. M. Sogaard, P.V. Hendriksen, M. Mogensen, F.W. Poulsen and E. Skou, Solid State Ionics, 177, 3285 (2006) https://doi.org/10.1016/j.ssi.2006.09.005
  61. R Chiba, F. Yoshimura and Y. Sakurai, Solid State Ionics, 124, 281 (1999) https://doi.org/10.1016/S0167-2738(99)00222-2
  62. M. Bevilacqua, T. Montini, C. Tavagnacco, G. Vicario, P. Fornasiero and M. Graziani, Solid State Ionics, 177, 2957 (2006) https://doi.org/10.1016/j.ssi.2006.08.018
  63. J.-S. Kim and S.-I. Pyun, J. Kor. Electrochem. Soc., 8, 106 (2005) https://doi.org/10.5229/JKES.2005.8.2.106
  64. S.B. Adler, J.A. Lane and B.C.H. Steele, J. Electrochem. Soc., 143, 3554 (1996) https://doi.org/10.1149/1.1837252
  65. S.B. Adler, J.A. Lane and B.C.H. Steele, J. Electrochem. Soc., 144, 1884 (1997) https://doi.org/10.1149/1.1837696
  66. J.-S. Kim, S.-I. Pyun, J.-W. Lee and R.-H. Song, J. Solid State Electrochem., 11, 117 (2007) https://doi.org/10.1007/s10008-005-0080-0
  67. S.B. Adler, Solid State Ionics, 111, 125 (1998) https://doi.org/10.1016/S0167-2738(98)00179-9
  68. N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado and A. Caneiro, Solid State Ionics, 177, 907 (2006) https://doi.org/10.1016/j.ssi.2006.02.009
  69. M.T. Colomer, B.C.H. Steele and J.A. Kilner, Solid State Ionics, 147, 41 (2002) https://doi.org/10.1016/S0167-2738(02)00002-4
  70. J. Liu, A.C. Co, S. Paulson and V.I. Birss, Solid State Ionics, 177, 377 (2006) https://doi.org/10.1016/j.ssi.2005.11.005
  71. S.B. Adler, Chem. Rev., 104, 4791 (2004) https://doi.org/10.1021/cr020724o
  72. Y.-M. Kim, S.-I. Pyun, J.-S. Kim and G.-J. Lee, press in J. Electrochem. Soc., 154 (2007)
  73. A. Ringuede and J. Fouletier, Solid State Ionics, 139, 167 (2001) https://doi.org/10.1016/S0167-2738(01)00692-0

Cited by

  1. Effect of calcination temperature on electrochemical properties of cathodes for solid oxide fuel cells vol.192, pp.1, 2011, https://doi.org/10.1016/j.ssi.2010.09.014
  2. ChemInform Abstract: Synthesis and Characteriyation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell vol.40, pp.15, 2009, https://doi.org/10.1002/chin.200915231