DOI QR코드

DOI QR Code

The Fundamentals of Reduction of UO22+ Ions on a Pt Electrode and Methods for Improving Reduction Current Efficiency

  • Yeon, Jei-Won (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2007.05.28

Abstract

This review article considered the electrochemical reduction of uranyl ions on a Pt surface. Specifically, we focussed on the improvement in its reduction current efficiency. First, this article briefly explained the fundamentals of the reduction of uranyl ($UO_2^{2+}$) ions on a Pt surface. Namely, they involved the electrochemical behaviour of uranium species, and electrochemical cell configurations for the reduction of $UO_2^{2+}$ ions. In addition, the effects of adsorbed hydrogen atoms were investigated on the reduction of $UO_2^{2+}$ ions. Finally, this article presented the methods for improving current efficiency of the reduction of $UO_2^{2+}$ ions on a Pt surface. Three different kinds of methods are introduced, which include electrochemical surface treatments of Pt electrode involving hydrogenation and anodisation, the use of catalyst poisons, and formation of thin mercury film on a Pt electrode. Moreover, this article provided some clues about how hydrogenation and catalyst poisons work on the reduction of $UO_2^{2+}$ ions.

Keywords

References

  1. C. Keller, 'The Chemistry of the Transuranium Elements', 77, First ed., Verlag Chemie GmbH, Weinheim/Bergstr., Germany (1971)
  2. G. R. Choppin, 'Actinide Speciation in Aquatic Systems', Mar. Chem., 99, 83 (2006) https://doi.org/10.1016/j.marchem.2005.03.011
  3. Z. Szabo, T. Toraishi, V. Vallet, and I. Grerithe, 'Solution Coordinate Chemistry of Actinide: Thermodynamics, Structure and Reaction Mechanism', Coordin. Chem. Rev., 250, 784 (2006) https://doi.org/10.1016/j.ccr.2005.10.005
  4. P. Herasymenko, 'Electroreduction of Uranyl Salts by means of the Mercury Dropping Cathode', Trans. Faraday Soc., 24, 272 (1928) https://doi.org/10.1039/tf9282400272
  5. I. M. Kolthoff and W. E. Harris, 'The Polarography of Uranium. II. Polarography in Strongly Acid Solution', J. Am. Chem. Soc., 68, 1175 (1946) https://doi.org/10.1021/ja01211a011
  6. D. M. H. Kern and E. F. Orlemann, 'The Potential of the Uranium(V), Uranium(VI) Couple and the Kinetics of Uraniurn(V) Disproportionation in Perchlorate Media', J. Am. Chem. Soc., 71, 2102 (1949) https://doi.org/10.1021/ja01174a055
  7. F. R. Duke and R. C. Pinkerton, 'Reaction Involving like-charged Ions. II. The Rate of Disproportionation of Uranium(V) in Deuterium Oxide' , J. Am. Chem. Soc., 73, 2361 (1951)
  8. G. Linzbach and G Kreysa, 'Microkinetic Investigation of the Eectrochemical Reduction of Uranyl Ions in Acid Solutions', Electrochim. Acta, 33, 1343 (1988) https://doi.org/10.1016/0013-4686(88)80124-5
  9. G. L. Booman, W. B. Holbrook and J. E. Rein, 'Coulometric Determination of Uranium(VI) at Controlled Potential', Anal. Chem., 29, 219 (1957) https://doi.org/10.1021/ac60122a011
  10. G. C. Goode, J. Herrington and G. Hall, 'The Determination of Uranium in the Presence of Plutonium by Controlled Potential Coulometry', Anal. Chim. Acta, 30, 109 (1964) https://doi.org/10.1016/S0003-2670(00)88696-1
  11. W. Davies, W. Gray and K. C. McLeod, 'Coulometric Determination of Uranium with a Platinum Working Electrode', Talanta, 17, 937 (1970) https://doi.org/10.1016/0039-9140(70)80136-9
  12. A. R. Joshi and U. M. Kasar, 'Coulometric Determination of Uranium in Presence of Iron/Plutonium Using a Platinum Working Electrode', J. Radioanal. Nucl. Ch., 150, 483 (1991) https://doi.org/10.1007/BF02035335
  13. A. Aramata, S. Terui, S. Taguchi, T. Kawaguchi and K. Shimazu, 'Underpotential Deposition of Zinc Ions on Polycrystalline Platinum: FTIR and EQCM Study', Electrochim. Acta, 41, 761 (1996) https://doi.org/10.1016/0013-4686(95)00364-9
  14. M. Futamata, L. Luo and C. Nishihara, 'ATR-SEIR Study of Anions and Water Adsorbed on Platinum Electrode', Surf. Sci., 590, 196 (2005) https://doi.org/10.1016/j.susc.2005.06.020
  15. A. M. Nowicka, E. Zabost, M. Donten, Z. Mazerska and Z. Stojek, 'Electro-Oxidation of Dissolved ds-DNA Backed by in situ UV-Vis Spectroscopy', Bioelectrochemistry, 71, 126 (2006) https://doi.org/10.1016/j.bioelechem.2007.02.007
  16. A. J. Bard, 'Encyclopedia of Electrochemistry of the Elements' 440, Vol. IX, part B, Marcel Dekker, Inc., New York (1973)
  17. L. Sipos, L. J. Jeftiae, M. Branica and Z. Galus, 'Electrochemical Redox Mechanism of Uranium in Acidic Perchlorate Solutions', Electroanal. Chem. Inter. Electrochem., 32, 35 (1971) https://doi.org/10.1016/S0022-0728(71)80233-4
  18. A. J. Bard and L. R. Faulker, 'Electrochemical Methods', 127, John Wiley & Sons, Inc., New York (1980)
  19. Y. Le Duigou, W. Leidert and M. Bickel, 'A Controlled Potential Coulometer for High Precision Uranium and Plutonium Analysis. Part II: Application and Performance', Fresen., J. Anal. Chem., 351, 499 (1995) https://doi.org/10.1007/BF00322723
  20. H. Aoyagi and Z. Yoshida, 'Plutonium and Uranium Ion Determination and Differentiation Based on Twin Electrode Flow Coulometry', Anal. Chem., 59, 400 (1987) https://doi.org/10.1021/ac00130a005
  21. H. Takeishi, H. Muto, H. Aoyagi, T. Adachi, K. Izawa, Z. Yoshida and H. Kawamura, 'Determination of Oxygen/Uranium Ratio in Irradiated Uranium Dioxide Based on Dissolution with Strong Phosphoric Acid', Anal. Chem., 58, 458 (1986) https://doi.org/10.1021/ac00293a043
  22. G. Petrich, U. Galla, H. Goldacker and H. Schmieder, 'Electro-Reduction Plused Column for the Purex-Process Operation and Theoretical Results', Chem. Eng. Sci., 41, 981 (1986) https://doi.org/10.1016/0009-2509(86)87183-4
  23. P. Zanello, G Raspi and A. Cinquantini, 'Electroreduction of Uranium(VI) at a Platinum Electrode and Its Analytical Applications', Talanta, 23, 103 (1975) https://doi.org/10.1016/0039-9140(76)80031-8
  24. J. W. Yeon and S. J. Pyun, 'Roles of Adsorbed OH and Adsorbed H in the Oxidation of Hydrogen and the Reduction of $UO_{2}^{2+}$ Ions, Respectively, at Pt Electrode under Non-Conventional Conditions', press in J. Appl. Electrochem (2007)
  25. B. E. Conway and J. O'M. Bockris, 'Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal', J. Chem. Phys., 26, 532 (1957) https://doi.org/10.1063/1.1743339
  26. J. O'M. Bockris and A. K. Reddy, 'Modem Electrochemistry', 1141, Plenum/Resetta ed., Plenum Press, New York (1973)
  27. E. Gileadi, E. Kirowa-Eisner and j. Penciner, 'Interfacial Electrochemistry', 293, First ed., Addison-Wesley Publishing Company, London (1975)
  28. B. E. Conway and L. Bai, 'Determination of Adsorption of OPD H species in the Cathodic Hydrogen Evolution Reaction at Pt in Relation to Electrocatalysis', J. Electroanal. Chem., 198, 149 (1986) https://doi.org/10.1016/0022-0728(86)90033-1
  29. N. M. Markoviae, B. N. Grgur and P. N. Ross, 'Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions', J. Phys. Chem. B, 101, 5405 (1997) https://doi.org/10.1021/jp970930d
  30. B. E. Conway and B. V. Tilak, 'Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of $H_{2}$, and the Role of Chemisorbed H', Electrochim. Acta, 47, 3571 (2002) https://doi.org/10.1016/S0013-4686(02)00329-8
  31. S. I. Pyun, 'The Fundamentals of Corrosion of Metals and Their Application into Practice', 378, Cheung-Moon-Gak Press Inc., Seoul Korea (2006)
  32. D. Cozzi, G. Raspi and L. Nucci, 'A Cell with Solid Microelectrode with Periodical Renewal of the Diffusion Layer', J. Electroanal. Chem., 12, 36 (1966) https://doi.org/10.1016/0022-0728(66)80106-7
  33. J. Nucci and G. Raspi, 'Voltammetric Study of the $VO^{2+}/V^{3+}$ Couple at the Platinized Platinum Electrode in Perchloric Acid', J. Electroanal. Chem., 36, 499 (1972) https://doi.org/10.1016/S0022-0728(72)80274-2
  34. J. D. Burke and M. B. C. Roche, 'Hydrous Oxide Formation on Platinum-A Useful Route to Controlled Platinization', J. Electroanal. Chem., 164, 315 (1984) https://doi.org/10.1016/S0022-0728(84)80215-6
  35. B. E. Conway and S. Gottesfeld, 'Real Condition of Oxidized Platinum Electrode', J. Chem. Soc., Faraday Trans., 69, 1090 (1973) https://doi.org/10.1039/f19736901090
  36. L. B. Harris and A. Damjanovick, 'Initial Anodic Growth of Oxide Film in 2N $H_{2}SO_{4}$ under Galvanostatic, Potentiostatic, and Potentiodynamic Conditions: The Question of Mechanism', J. Electrochem. Soc., 122, 593 (1975) https://doi.org/10.1149/1.2134272
  37. A. Damjanovick, A. T. Ward, B. Ulrick and M. O' Jea, 'Growth of Oxide Films at Pt Anodes at Constant Current Density in $H_{2}SO_{4}$', J. Electrochem. Soc., 122, 471 (1975) https://doi.org/10.1149/1.2134242
  38. L. D. Burke, J. J. Borodzinski and K. J. O'Dwyer, 'Multilayer Oxide Growth on Platinum Under Potential Cycling Conditions - I. Sulfuric Acid Solution', Electrochim. Acta, 35, 967 (1990) https://doi.org/10.1016/0013-4686(90)90029-Y
  39. A. Damjanovic, V. I. Birss and D. S. Boudreaux, 'Electron Transfer Through Thin Anodic Oxide Films during the Oxygen Evolution Reactions at Pt Electrodes' , J. Electrochem. Soc., 138, 2549 (1991) https://doi.org/10.1149/1.2086015
  40. N. Gopinath, N. N. Mirashi, K. Chander and S. K. Aggarwal, 'Rapid Reduction of U(VI) on Activated Platinum Wire Gauze Electrode for the Primary Coulometric Determination of Uranium', J. Appl. Electrochem., 34, 617 (2004) https://doi.org/10.1023/B:JACH.0000021925.61151.95
  41. M. G. Fontana, 'Corrosion Engineering', 282, Third Ed., McGraw-Hill Book Company, New York (1987)
  42. S. I. Pyun, 'The Fundamentals of Corrosion of Metals and Their Application into Practice', 325, Cheung-Moon-Gak Press Inc., Seoul Korea (2006)
  43. S. Y. Qian, B. E. Conway and G. Jerkiewicz, 'Kinetic Rationalization of Catalyst Poison Effects on Cathodic H Sorption into Metals: Relation of Enhancement and Inhibition to H Coverage', J. Chem. Soc., Faraday Trans., 94, 2945 (1998) https://doi.org/10.1039/a804113j
  44. S. J. Pyun, 'Outlines of Electrochemistry at Materials', 495, Cheung-Moon-Gak Press Inc., Seoul Korea (2003)
  45. E. Smith, 'Near Threshold Delayed Hydride Crack Growth in Zirconium Alloys' , J. Mater. Sci., 30, 5910 (1995) https://doi.org/10.1007/BF01151504
  46. D. R. Gabe, 'The Role of Hydrogen in Metal Electrodeposition Process', J. Appl. Electrochem., 27, 908 (1997) https://doi.org/10.1023/A:1018497401365
  47. S. I. Pyun, 'The Fundamentals of Corrosion of Metals and Their Application into Practice', 475, Cheung-Moon-Gak Press Inc., Seoul Korea (2006)
  48. L. B. Rogers and A. F. Stehney, 'The Electrodeposition Behavior of a Simple Ion', J. Electrochem. Soc., 95, 25 (1949) https://doi.org/10.1149/1.2776731
  49. L. B. Rogers, D. P. Krause, J. C. Griess and D. B. Ehrlinger, 'The Electrodeposition Behavior of Tracers of Silver', J. Electrochem. Soc., 95, 33 (1949) https://doi.org/10.1149/1.2776732
  50. L. Ramaley, R. L. Brubaker and C. G. Enke, 'Mercury-Coated Platinum Electrode', Anal. Chem., 35, 1088 (1963) https://doi.org/10.1021/ac60201a004
  51. A. M. Hartley, A. G. Hiebert and J. A. Cox, 'Preparation and Properties of a Platinum-Based Mercury-Film Electrode', J. Electroanal. Chem., 17, 81 (1968) https://doi.org/10.1016/S0022-0728(68)80032-4
  52. Z. Stojek and Z. Kublik, 'Silver Based Mercury Film Electrode: I. General Characteristics and Stability of the Electrode', J. Electroanal. Chem., 60, 349 (1975) https://doi.org/10.1016/S0022-0728(75)80269-5
  53. T. Berzins and P. Delahay, 'Kinetics of Fast Electrode Reactions', J. Am. Chem. Soc., 77, 6448 (1955) https://doi.org/10.1021/ja01629a006
  54. K. W. Gardiner and L. B. Rogers, 'Coulometric Determination of Submicrogram Amounts of Cadmium and Zinc', Anal. Chem., 25, 1393 (1953) https://doi.org/10.1021/ac60081a026
  55. T. L. Marple and L. B. Roger, 'Polarographic Studies with a Stationary Mercury-Plated Platinum Electrode', Anal. Chem., 25, 1351 (1953) https://doi.org/10.1021/ac60081a014
  56. J. W. Ross, R. D. DeMars and I. Shain, 'Analytical Application of the Hanging Mercury Drop Electrode', Anal. Chem., 28, 1768 (1956) https://doi.org/10.1021/ac60119a039
  57. S. Brukenstein and T. Nagai, 'The Rotated, Mercury-Coated Platinum Electrode: Preparation and Behavior of Continuously Deposited Mercury Coatings and Applications to Stripping Analysis', Anal. Chem., 33, 1201 (1961) https://doi.org/10.1021/ac60177a023
  58. N. Furuya and S. Motoo, 'The Electrochemical Behavior of Ad-Atoms and Their Effect on Hydrogen Evolution: Part I. Order-Disorder Rearrangement of Copper Ad-Atoms on Platinum', J. Electroanal. Chem., 72, 165 (1976) https://doi.org/10.1016/S0022-0728(76)80165-9
  59. N. Furuya and S. Motoo, 'The Electrochemical Behavior of Ad-Atoms and Their Effect on Hydrogen Evolution: Part II. Arsenic Ad-Atoms on Platinum', J. Electroanal. Chem., 78, 243 (1977) https://doi.org/10.1016/S0022-0728(77)80119-8
  60. N. Furuya and S. Motoo, 'The Electrochemical Behavior of Ad-Atoms and Their Effect on Hydrogen Evolution: Part III. Platinum Ad-Atoms on Gold, and Gold, and National Ad-Atoms', J. Electroanal. Chem., 88, 151 (1978) https://doi.org/10.1016/S0022-0728(78)80262-9
  61. A. M. Hartly, A. G. Hiebert and J. A. Cox, 'Preparation and Properties of a Platinum Based Mercury-Film Electrode', J. Electroanal. Chem., 17, 81 (1968) https://doi.org/10.1016/S0022-0728(68)80032-4
  62. M. Z. Hassan, D. F. Untereker and S. Bruckenstein, 'Ring-Disk Study of Thin Mercury Film on Platinum', J. Electroanal. Chem., 42, 161 (1973) https://doi.org/10.1016/S0022-0728(73)80390-0
  63. D. Hodko and V. Pravdire, 'Kinetic Parameters for the Reduction of U(VI) in Carbonate Solutions from Measurements at Thin Mercury Film Electrodes', Electrochim. Acta, 30, 1341 (1985) https://doi.org/10.1016/0013-4686(85)85012-X