DOI QR코드

DOI QR Code

Effects of Catechin on Lipid Composition and Adipose Tissue in Obese Rats Fed High Fat Diet

고지방 식이로 유도된 비만쥐에서 녹차 Catechin이 체지방 조성 및 지방조직에 미치는 영향

  • Rhee, Soon-Jae (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Kyung-Ran (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Hong-Tae (Dept. of Anatomy, College of Medicine, Catholic University of Daegu) ;
  • Hong, Jung-Hee (Dept. of Food Science and Nutrition, Catholic University of Daegu)
  • 이순재 (대구가톨릭대학교 식품영양학과) ;
  • 김경란 (대구가톨릭대학교 식품영양학과) ;
  • 김홍태 (대구가톨릭대학교 의과대학 해부학교실) ;
  • 홍정희 (대구가톨릭대학교 식품영양학과)
  • Published : 2007.05.30

Abstract

The current study examined the effects of catechin on lipid composition of serum and liver and adipocyte of epididymal fat pads in obese rats fed high fat diet. Sprague-Dawley male rats weighing $100{\pm}10g$ were randomly divided into eight groups, four normal diet groups and four high fat diet groups according to the level of dietary catechin supplement. The rats were fed ad libitum experimental diets for 4 weeks and then they were sacrificed. Body weight in HF group was heavier than that of NC group, but HFCM and HFCH groups were significantly reduced compared to HF group. Relative body weight to abdominal weight and relative body weight to epididymal weight in HF group were increased to 103% and 106%, respectively, compared to NC group, but HFCM and HFCH groups were significantly reduced as compared to HF group. The levels of serum triglyceride, total cholesterol, LDL-cholesterol and atherogenic index in HFCH groups were significantly lower than those of HF group, whereas HDL-cholesterol levels were increased. Total lipid contents of liver in HF group was significantly higher than that of NC group, but HFCH group maintained the NC level. There were no significant difference in hepatic triglyceride contents of high fat diet groups. Contents of hepatic cholesterol in HF group was 29% higher than that of NC group, but HFCM and HFCH groups were significantly reduced as compared to HF group. Cell number and cell size of epididymal fat pads in HFCM and HFCH groups were significantly reduced, respectively, compared to HF group. Improved lipid metabolism observed in rats fed catechin may be caused by an alteration of number and size in epididymal fat pad and lipid composition.

본 연구에서는 고지방식이 흰쥐에서 녹차 catechin의 체지방 조성 및 지방조직에 미치는 영향을 규명하고자 혈중 및 간조직의 지질조성과 지방조직의 세포 수 및 크기를 관찰하였다. 실험동물은 체중 $100{\pm}10g$내외의 Sprague-Dawley종 흰쥐를 이용하여 catechin의 공급수준에 따라 각각 10마리씩 총 8군으로 나누어 4주간 자유섭식시킨 후 지질대사를 관찰하였다. 체중증가량을 관찰한 결과 HFCM 및 HFCH군에서 HF군에 비해 체중이 유의적으로 감소됨을 관찰할 수 있었다. 단위 체중당 복부지방 및 부고환지방 무게는 NC군에 비해 HF군에서 각각 103%, 106%씩 증가되었으나, HFCM 및 HFCH군은 HF군에 비해 각각 15%, 23% 및 21%, 33%씩 감소되었다. 혈중 중성지방, 총 콜레스테롤, LDL-콜레스테롤 및 동맥경화지수는 HF군에 비해 HFCH군에서 유의적으로 감소되었으나, HDL-콜레스테롤은 증가되었다. 간조직의 총 지방 함량은 NC군에 비해 HF군에서 유의적으로 증가되었으나 HFCH군은 정상식이군 수준이었다. 중성지방 함량은 고지방식이 실험군간의 유의적인 차이는 없었다. 콜레스테롤 함량은 NC군에 비해 HF군은 29% 증가되었으나, HFCM 및 HFCH군은 HF군에 비해 유의적으로 감소되었다. 부고환지방의 세포수 및 세포크기도 HFCM 및 HFCH군이 HF군에 비해 유의적으로 감소되었다. 결론적으로 녹차 catechin은 혈청에서 총콜레스테롤, 중성지방 및 동맥경화지수를 감소시키고 부고환지방의 세포수 및 크기의 감소를 유도하여 비만을 억제시키는 효과가 규명되었다.

Keywords

References

  1. Chua SC Jr. 1997. Monogenic models of obesity. Behav Genet 27: 277-284 https://doi.org/10.1023/A:1025679728948
  2. Dattilo AM, Kris-Etherton PM. 1992. Effects of weight reduction on blood lipids and lipoprotein: a meta-analysis. Am J Clin Nutr 56: 320-328 https://doi.org/10.1093/ajcn/56.2.320
  3. Oberrieder H, Walker R, Monroe D, Adeyanju M. 1995. Attitude of dietetics students and registered dietitians toward obesity. J Am Diet Assoc 95: 914-916 https://doi.org/10.1016/S0002-8223(95)00252-9
  4. King DJ, Devaney N. 1988. Clinical pharmacology of sibutramine hydrochloride (BTS 54524), a new antidepressant, in healthy volunteers. Br J Pharmacol 26: 607-611 https://doi.org/10.1111/j.1365-2125.1988.tb05303.x
  5. Mason EE. 1992. Methods for voluntary weight loss and control. Obes Surg 2: 275-276 https://doi.org/10.1381/096089292765560187
  6. Helms RA, Whitington PF, Mauer EC, Catarau EM, Christensen ML, Borum PR. 1986. Enhanced lipid utilization in infants receiving oral L-carnitine during long-term parenteral nutrition. J Pediatr 109: 984-988 https://doi.org/10.1016/S0022-3476(86)80281-5
  7. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. 1998. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275: R667-672
  8. Park Y, Albright KJ, Storkson JM, Liu W, Cook ME, Pariza MW. 1999. Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34: 243-248 https://doi.org/10.1007/s11745-999-0359-7
  9. Birketvedt GS, Aaseth J, Florholmen JR, Rhttig K. 2000. Long-term effect of fibre supplement and reduced energy intake on body weight and blood lipids in overweight subjects. Acta Medica (Hradec Kralove) 43: 129-132
  10. Kim SH, Park JD, Lee LS, Han DS. 1999. Effect of pH on the green tea extraction. Korean J Food Sci Technol 31: 1024-1028
  11. Yeo SG, Ahn CW, Lee YW, Lee TG, Park YH, Kim SB. 1995. Antioxidative effect of tea extracts from green tea, oolong tea and black tea. J Korean Soc Food Nutr 24: 299-304
  12. Choi SH, Lee BH, Choi HD. 1992. Analysis of catechin contents in commercial green tea by HPLC. J Korean Soc Food Nutr 21: 386-389
  13. Park CO, Heun JS, Ryu BH. 1996. Antioxidant activity of green tea extracts toward human low density lipoprotein. Korean J Food Sci Technol 28: 850-858
  14. Choe WK, Park JH, Kim SH, Lee DY, Lee YC. 1999. Antitumor effects of green tea catechin on different cancer cells. Korean J Nutr 32: 838-843
  15. Graham HN. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev Med 21: 334-350 https://doi.org/10.1016/0091-7435(92)90041-F
  16. Toda M, Okubo S, Ikigai H, Shimamura T. 1990. Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives. Nippon Saikingaku Zasshi 45: 561-566 https://doi.org/10.3412/jsb.45.561
  17. Ikigai H, Nakae T, Hara Y, Shimamura T. 1993. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta 1147: 132-136 https://doi.org/10.1016/0005-2736(93)90323-R
  18. Huang Y, Zhang A, Lau CW, Chen ZY. 1998. Vasorelaxant effects of purified green tea epicatechinn derivatives in rat mesenteric artery. Life Sci 63: 275-283 https://doi.org/10.1016/S0024-3205(98)00273-2
  19. Duarte J, Peres Vizcaino F, Utrilla P, Jimenez J, Tamargo J, Zarzuelo A. 1993. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen Pharmacol 24: 857-862 https://doi.org/10.1016/0306-3623(93)90159-U
  20. Hii CS, Howell SL. 1984. Effects of epicatechin on rat islets of Langerhans. Diabetes 33: 291-296 https://doi.org/10.2337/diabetes.33.3.291
  21. Chakravarthy BK, Gupta S, Gode KD. 1982. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (-)-epicatechin. Life Sci 31: 2693-2697 https://doi.org/10.1016/0024-3205(82)90713-5
  22. Da Silva EL, Piskula M, Terao J. 1998. Enhancement of antioxidative ability of rat plasma by oral administration of (-)-epicatechin. Free Radic Biol Med 24: 1209-1216 https://doi.org/10.1016/S0891-5849(97)00438-3
  23. Lotito SB, Fraga CG. 1998. (+)-Catechin prevents human plasma oxidation. Free Radic Biol Med 24: 435-441 https://doi.org/10.1016/S0891-5849(97)00276-1
  24. Polette A, Lemaitre D, Laqarde M, Vericel E. 1996. N-3 fatty acid-induced lipid peroxidation in human platelets is prevented by catechins. Thromb Haemost 75: 945-949
  25. Kelly C, Hunter K, Crosbie L, Gordon MJ, Dutta-Roy AK. 1996. Modulation of human platelet function by food flavonoids. Biochem Soc Trans 24: 197S https://doi.org/10.1042/bst024197s
  26. Chen ZP, Schell JB, Ho CT, Chen KY. 1998. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 129: 173-179 https://doi.org/10.1016/S0304-3835(98)00108-6
  27. Fujiki H, Suganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Nakachi K. 1998. Cancer inhibition by green tea. Mutat Res 402: 307-310 https://doi.org/10.1016/S0027-5107(97)00310-2
  28. Suzuki H, Ishigaki A, Hara Y. 1998. Long-term effect of a trace amount of tea catechins with perilla oil on the plasma lipids in mice. Int J Vitam Nutr Res 68: 272-274
  29. Muramatsu K, Fukuyo M, Hara Y. 1986. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 32: 613-622 https://doi.org/10.3177/jnsv.32.613
  30. Sayama K, Ozeki K, Taguchi M, Oquni I. 1996. Effect of green tea and tea catechins on the development of mam mary gland. Biosci Biotech Biochem 60: 169-170 https://doi.org/10.1271/bbb.60.169
  31. http://www.fzrm.com
  32. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502
  33. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D. Roberfoid M, Delzenne N. 1977. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30: 163- 167 https://doi.org/10.1007/BF02538270
  34. Folch JM, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 26: 497-509
  35. Sale FD, Marchesini S, Fishman PH, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Academic Press Inc., New York. p 347-350
  36. Hirsch J, Gallian E. 1968. Methods for the determination of adipose cell size in man and animals. J Lipid Res 9: 100-119
  37. Di Girolamo M, Mendlinger S, Fertig JW. 1971. A simple method to determine fat cell size and number in four mammalian species. Am J Physiol 221: 850-858
  38. Gupta S, Saha A, Giri AK. 2002. Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutat Res 512: 37-65 https://doi.org/10.1016/S1383-5742(02)00024-8
  39. Lee YJ, Ahn MS, Hong KH. 1998. A study on the content of general compounds, amino acid, vitamins, catechins, alkaloids in green, oolong and black tea. J Fd Hyg Safety 13: 377-382
  40. Kao YS, Hiipakka RA, Liao S. 2000. Modulation of obesity by a green tea catechin. Am J Clin Nutr 72: 1232-1234 https://doi.org/10.1093/ajcn/72.5.1232
  41. Bracco D, Ferrarra JM, Arnaud MJ, Jequier E, Schutz Y. 1995. Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 269: E671-E678
  42. Rim JCK, Kang SA. 2001. Effect of high fat and high carbohydrate diet on serum leptin and lipid concentration in rats. Korean J Nutr 34: 123-131
  43. Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M. 1992. Tea catechins decreases micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127: 141-146 https://doi.org/10.1016/0005-2760(92)90269-2
  44. Imai K, Nakachi K. 1995. Cross sectional study of effects of drinking green tea on cardiovascular and liver disease. BMJ 18: 693-696
  45. Son HH, Park MR, Rhee SJ. 2002. Effects of dietary xylooligosaccharides on lipoprotein lipase activity in epididymal adipose tissue and lipid composition in serum of rats fed high fat diets. Korean J Nutr 35: 1023-1030
  46. Cha JY, Cho YS, Kim DJ. 2001. Effect of chicory extract on the lipid metabolism and oxidative stress in rats. J Korean Soc Food Sci Nutr 30: 1220-1226
  47. Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. 2000. Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem 11: 45-51 https://doi.org/10.1016/S0955-2863(99)00070-4
  48. Watanabe J, Kawabata J, Niki R. 1998. Isolation and identification of acetyl-CoA carboxylase inhibitors from green tea (Camellia sinensis). Biosci Biotechnol Biochem 62: 532-534 https://doi.org/10.1271/bbb.62.532
  49. Erba D, Riso P, Bordoni A, Foti P, Biaqi PL, Testolin G. 2005. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem 16: 144-149 https://doi.org/10.1016/j.jnutbio.2004.11.006

Cited by

  1. Effect of Pumpkin, Corn Silk, Adzuki Bean, and Their Mixture on Weight Control and Antioxidant Activities in High Fat Diet-Induced Obesity Rats vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1239
  2. Antiadipogenic Effect of Korean Glasswort (Salicornia herbacea L.) Water Extract on 3T3-L1 Adipocytes vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.814
  3. Fermented Crataegi fructus Vinegar Improves Lipid Metabolism in Rats Fed High Fat Diet vol.38, pp.8, 2009, https://doi.org/10.3746/jkfn.2009.38.8.1024
  4. Anti-Obesity Effect of Crataegus Fructus Extract from Chinese Cultivation vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1586
  5. Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1681
  6. Anti-obesity effect of Korean Hamcho (Salicornia herbaceaL.) powder on high-fat diet-induced obese rats vol.48, pp.2, 2015, https://doi.org/10.4163/jnh.2015.48.2.123
  7. Water Extracts in Mouse 3T3-L1 Cells vol.21, pp.8, 2018, https://doi.org/10.1089/jmf.2017.4154