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UPPER BOUNDS FOR BIVARIATE BONFERRONI-TYPE
INEQUALITIES USING CONSECUTIVE EVENTS

MiIN-YouNG LEE

ABSTRACT. Let A1, A2,...,Am and B1, Ba, ..., By be two sequences of
events on the same probability space. Let X = Xu(A) and Y = Y, (B),
respectively, denote the numbers of those A;’s and B;’s which occur.
We establish new bivariate Bonferroni-type inequalities using consecutive
events and deduce a known result.

1. Introduction

Let Ay, As,...,An and By, Bs,..., B, be two sequences of events on the
same probability space. Let X = X,,(A) and Y = Y,,(B), respectively, denote
the numbers of those A;’s and B;’s which occur. Put Sy = 1 and, for integers
r and £, set

(1) ST,tZZZP(AilAiz'”AirleBjé '“Bjt)’

where the summation is over all subscripts satisfying 1 < iy < ip < -+ < i, <
mand1<j <ja<:--<jt<n, 0<r<mand0<t<n (we abbreviate
AN B as AB and an empty intersection is the sample space). We can easily
prove that S,; at (1) is the binomial moment of the vector (X,Y) and then

write the moment form
X\/Y
s=2[(7) (7))
r t

We are interested in bivariate Bonferron-type inequalities which mean bound
by linear combinations of the binomial moment S, ;. In particular, we want to
establish upper bound of y1; = P(X,, > 1,Y, > 1) which appears in many
problems in statistics.

Galambos and Xu [3] proved that

2 2 4
y11 = P(UZ 1A, U By) < S1p—~ —77;52’1 - 55’1,2 + %52,2,
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which insists the best upper bound among all upper bounds of the form d; .51 1+
daSa1 + d3S1 2 + deSapn.
The classical lower bound for bivariate probability of degree two is

S11—812— 82,1 < P(X,, >1,Y,>1)

and our idea is to reduce the number of terms in binomial moments S 5 and
55,1 in order to get an upper bound. For a related idea, see the graph-dependent
models of Renyi [5] and Galambos [2].

In this direction, we establish new bivariate Bonferroni-type inequalities
using consecutive events and deduce a known result.

Theorem 1. For integers myn>2 and1<i<m, 1 <j<n, then
m—1

1 =PXn>1Y,>1)< 85, - Z P(A;Ai41Bi)
i=1

(2) n—1 m—1n—1
— > P(AxB;Bjt1) — Y Y P(AiAiy1B;Bjp).
j=1 i=1 j=1
Taking the averages over i = 1,...,m, j = 1,...,n of (2), we get Corol-
lary 1.

Corollary 1.

2 4
Y10 S 811 — ——S21— ——812— —522
mn mn mn

Theorem 2. For integers myn>2 and1<i1<m, 1<7j<n, then

m—1 n m n—1
Y11 <S11— Z ZP A;Aiy1Bj) Z Z P(A;B;Bj1)
i=1 j=1 i=1 j=1
(3) e lmet
+ Z Z P(A,;A,;+1Bij+1).

i=1 j=1

Taking the averages over i =1,2,...,m, 7 =1,2,...,n of (3), we get the
following bivariate Bonferroni-type inequality.

Corollary 2.

2 2 4
Y11 < S — =81 - =S12+—S52.2.
m n mn
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Theorem 3. For integers m,n > 2 and1 <1< m,1<j<n, then
(4)

m—1 m—2 n—1

y11 <511 — Z P(A;Ai41Bg) — Z P(A;Ai+2By) — Z P(AxB;Bji1)
=1 i=1 i=1
n—2 m—1n-1
— > P(AxB;Bjy) — P(A;Ai11B;Bj1)
j=1 i=1 j=1
m—2 n—2
+ P(A;Ai;1Ai42Bi) + Z P(AxB;Bjt1Bj42).
i=1 j=1
Taking the averages over t = 1,...,m, 7 = 1,...,n of (4), we get Corol-
lary 3.
Corollary 3.
2m —3 2n—3 -1 -1
y11 < 811 — (im“_)SQ 1 ( - )51,2 - @#—252,2
()n (5Im (53
m— 2 n—2
( p )53,1 + (—n—)51,3~
(3)” (3)7”

Theorem 4. For integers m,n > 2 and 1 <i<m,1 < j < n, then

(5)
m n—2 m—2 n
Y11 <811 — Z Z P(A;B;By) — Z ZP(AiAlBj)

=1 1<j<k<j+2 1<i<i<i+2 j=1
m—2 n—2 m n—2
+ > > P(AAB;By)+ Y Y P(A;B;B;11B;15)
1<i<I<i42 1<5<k<j+2 i=1 j=1
m—2 n

m—2 n—2
+ Z ZP(AiAi+1Ai+2-Bj) - Z ZP(AiAlBjBH-lBj-i—Z)

i=1 j=1 1<e<i<i42 j=1

- P(A;Ai11Ai42B;jBy)

+ Z P(AjAi11Ai2B;Bj 1By 2).

i=1 j=1

Taking the averages over 1 = 1,...,m, j =1,...,n of (5), we get Corol-
lary 4.
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Corollary 4.

m(2n — 3) (2m~3)n o (2m—3)(2n-3)

O T TR BI6
m(n — 2) (m — 2)nS .

GG BN GG

_ (m-2)(2n - )S32 (m—2)(n—2)533

(5)() &E

2. Proofs
Proof of Theorem 1. We use the method of indicators. Let

1< 511 - Si12— S22

S13+

1, f X>1andY >1

I(X>LY>1)=
(X = =1 {0, otherwise.

By using binomial moments and indicators, the right hand side of (2) becomes

Blxy - ZI AT (B@—iI(Ak)qu)I(BJ-H)
(6) m—1n—1 =
ZZI A1) (B')I(Bﬂ—l)]-

Then E[I(X > 1,Y > 1)] = P(X > 1,Y > 1), it suffices to show that
I(X > DIY > 1)

m—1 n—1

o XS [Z LA (Ass)I(BD) + 3 I(ADI(B)I(By)
Y YT ;) (By)].

Note that both sides of (7) are zero if either X or Y equals zero, hence, in
proving (7) we may assume that X > 1 and Y > 1, in which the left hand side
of (7) is identically one. Thus, we have to prove that

(8) u(X,Y)= the right hand side of (7) > 1 for 1< X <m,1<Y <mn.

We distinguish three cases:

(i) The case X = 1, Y = 1; that is, there are only two events A; and B;
occur. Then this case is evident, having one on both sides of (8).

(ii) Thecase X =1,Y =qor X =p, Y =1for2<p<m, 2<qg<n,;
that is, there are the events that exactly one A;(B;) and at least two more
B;’s(A;'s) occur. Then

u(l,g)=1-g—(g—1)=1landu(p,l)=p-1-(p~1) =1
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Hence, we get (8).
(iii) The case X =p, Y =g for 2 < p < m, 2 < g < n; that is, there are
the events that at least two more A4;'s and les occur. Then

up,q) =p-g—{p-D)+@-)+@p-1)-(¢g-1}=1

Hence, we get (8). This completes the proof. O
Proof of Theorem 2. We can prove (3) by the same way of proof of Theorem 1.
O
Proof of Theorem 3. We can prove (4) by the same way of proof of Theorem 1.
O
Proof of Theorem 4. We use Bonferroni-type inequality of Lee [4], that is,
m m m—2 m—2
P(U Al) < ZP(AZ) - Z P(AZA])-F Z P(AiAH_lAH_Q).
i=1 i=1 i< <it2 i=1
We consider two univariate Bonferroni-type inequalities.
m m m—2
9 P 4) <> P Z P(AiAn) + ) P(AiAir1Ai),
i=1 i=1 i<I<i+2 i=1
n n n—2 -2
1) P(|J B Z ~ Y P(BiB)+ Z P(B;B;+1Bj2).
j=1 j<k<j+2 j=1
Turning to indicators, (12) and (13) become
m m—2
(11) I(X=21) < ZI(Ai) - Z I(A) + Z Ai1)I(Ais2),
i=1 i<I<i+2
n n—2 n—2
(12) I(Y 21) <Y I(Bj)— Y IBYI(Bi)+ Y I(B)I(Bj11)I(Bjsa).
Jj=1 J<k<ji+2 Jj=1

By multiplying (11) and (12) and taking expectations, we get Theorem 4. [1

3. Numerical examples

Example 3-1. Let a machine consist of two pieces of equipments A and B.
Let X; be the time to failure of the i-th component of equipment A and let
Y; be the time to failure of the j-th component of equipment B. Assume that
each X; and each Y; are unit exponential variates, that is, for each ¢, 7,

P(Xi<z)=1-¢ >0 and P(Y;<y)=1-e¥ y>0.

Consider a group A of ten components and a group B of five components. Let
Xi,Xo,...,X10 be independent and identically distributed random variables
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and let Y;,Y5,...,Ys be independent and identically distributed random vari-
ables. We assume the structure is such that each X; is completely dependent
on each Y; and it has probability zero that at least one component of equipment
A(B) fails within x(y) period of time and all components of equipment B(A)
fail after y(z) period of time, that is, for each 1 <1< 10,1 < j <5,

UX <a), ﬂ ¥; 2 ) (ﬂ(Xiz:]c),U(mq)):o.

We also specify the bivariate distributions and the trivariate distributions of
the combination of X; and Y;. For simplicity, let us use the same bivariate
and trivariate distributions for all dependent components. Let, for 1 < ¢ <
10, 1<5<5,

PX;<z,Yj<y)=(1-e")1-e¥)(1- %e'—m—y)’

P(Xil < JZ,Xi2 < CE,Y]’ < y) (1 _ e—z)2(1 . e_y)( ; g y)

1
P(X;<z,Y, <y,Y, <y)=1-e™)(1-e¥)*(1- ge—x—Qy)’
PXy <z, Xy, <2, Xy <z, ¥; <y)=(1- e-m).’i(l — e (1 - ie—h—y),
1
P(Xil < l',Xiz <z, )/3'1 <Yy, Y}z < y) = (1 _ 6—1)2(1 _ e_y)2(1 _ _e—2:c-—2y),

P(X;, <z, <y, Y, <y, Vi <y)=(1—e ") (1 -e¥)3(1- %e—w—fw),
P(X;, <z, X, <z, Xi, <2,Y, <y,Y;, <y)

=(1-e")P1—-e¥)2(1-
P(X;, <z, X3, <z,Y;, <y, Y, <y,Yj, <y)

1
_e~—3z—2y)

)

— (1 _ e"z)Q(l _ e_y)?’(l _ %6—29:——31;),

P(X“ <x’Xi2 <£E,X <1"7Y’31 <ya}/}2 <y7)/;'3 <y)

— (1 _ e—-a:)?»(l _ e_y)?’(l _ _]_‘e—3x—3y)-

6

No further assumption is made. We would like to estimate P(Wx > z, Wy >
y), where Wx = min(X1, Xo, ..., X10) and Wy = min(Y1,Ys,...,Ys). Here, of
course, the events A; = (X; < z) and B; = (¥; < y) and thus (Vi = 0,Us =
0) = Wx >z, Wy > y). We can now compute the following probability. For
a numerical calculation, let us choose z = 0.1 and y = 0.2. Let Vi be the
number of those A; = (X; < 0.1) which occur and let Us be the number of
those B; = (Y; < 0.2) which occur.
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Si11= (110) (i) (1-e "1 -e %21 - %e—“) = 0.54301,

1
> P(AiAi1Bi) =9(1 - e )2 (1 - e ") (1 - 56—0-4) =0.011472,
4 1
> P(AxB;Bjy1) = 4(1 - e 1) (1 — e %)% (1 - 56-0-5) = 0.009979,
Jj=
9 4 1
> P(AiAi1BBj) = 36(1—e 1) (1—e )2 (1 - Ze—°~6) = 0.009242,

9
DO P(AiAi1By) =451 — e )P (1 — e (1 - %e—o-“) = 0.057362,

1
> P(AiAij1Ai2Br) = 8(1— e "3 (1 — e "%)(1 - Ze‘”’) = 0.001060,
i=1
2 1
> P(AxB;Bj11Bj2) = 3(1— e 1)(1 — e *%)3(1 - Ze—f”) = 0.001489,
j=1

10 3
1
> > P(AB;By) =T0(1— e "N (1 - e 2 (1 - 56—0-5) = 0.174627,

i=1 1<j<k<i+2

8 5
1
> Y P(AAB;) =85(1—e ") (1—eO%)(1 - ge—“) = 0.108350,
1<i<i<i42 j=1

8 3
> E P(A;A;B;By) =119(1 — e "1?(1 — e792)2(1 - ie—o-ﬁ)
1<i<I<i+21<j<k<j+2
=0.030550,

10 3
1
>N P(AiB;Bj41Bjy2) = 30(1—e " H)(1—e™%?)3(1 - Ze“”) = 0.014893,

=1 j=1
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8 5
DN P(AiAin1AiaB;) = 40(1 - e 1P (1 —e7"2)(1 - %e—ﬂ-f‘) = 0.005301,
i=1 j=1
8 3 1
Z ZP(AiAlB]’Bj+1Bj+2) 251(1 - 6_0'1)2(1 - 6_0‘2)3(1 - 56'0'8)
1<i<i<i42 j=1
=0.002504,

8 3
1
Z Z P(AiA,;+1Ai+2BjBk) 256(1 — 6_0'1)3(1 - 6_0'2)2(1 - 56_0'7)

=0.001428,

w

=0.000115.

Now, we can get the upper bounds of P(Vip > 1,Us > 1). Since P(Wx >
0.1,Wy >0.2) =1— P(Vip > 1,Us > 1) by our earlier assumption on depen-
dence, we get the following lower bounds of P(Wx > 0.1, Wy > 0.2).

Lower bounds for P(Wx > 0.1, Wy > 0.2)

inequality upper bound for y; 1 lower bound
(2) 0.512317 0.487683
(3) 0.395104 0.604896
4 0.497185 0.502815
(5) 0.306961 0.693039

In the above table, we see that (5) is the best upper bound for y; ;.

Example 3-2. Consider a numerical example in the paper of Chen and Seneta
(1]. Let Ci,...,Cs be events with specified probabilities (see table 1 of [1]).
Let C; = Ay, Co = Ay, C3 = A3, Cy = By, C5 = By, Cg = Bz. Then
51,1 = 1.259,52,1 = 0.225,51,2 = 0.37, 5'2,2 = 0.055,5’1,3 = S2,3 = 53,1 =
S3,2 = S3,3 = 0. The upper bound by Chen and Seneta[l1] is following

P(myn > a1,my > az)

-1
a;+1 n
< Sa1,a2 - (n_ a1 - (al + 1) )Sal+1,a2
1 N \7!
- g2 - Sa1 az+1
N —aq az+1 ’

+ a1+1_ n —1 a2+1— N -1 S
n—a ai +1 N—a2 a2+1 ai1+1l,a2+1-
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This yields y; 1 < 0.887 (see table 2 of [1}). But Corollary 4 gives y; ; < 0.719.

References

[1] T. Chen and E. Seneta, Multivariate identities, permutation and Bonferromi upper
bounds, Combinatorics, Probability and Computing 4 (1995), 331-342.

[2] J. Galambos, On the seive methods in probability theory I, Studia Sci. Math., Hungar.
1 (1966), 39-50.

[3] J. Galambos and Y. Xu, Some optimal bivariate Bonferroni-type bounds, Proc. Amer.
Math. Soc. 117 (1993), 523-528.

[4] M. Y. Lee, Bonferroni-type inequalities, Aequationes. Math. 44 (1992), 220-225.

(5] A. Renyi, A general method for proving theorems in probability theory and some of its
applications. Original Hungarian. Translated into English in : Selected Papers of A.
Renyi, Akademical Kiado, Budapest. 2 (1961), 297-302.

DEPARTMENT OF MATHEMATICS
DANKOOK UNIVERSITY

CHUNGNAM 330-714, KOREA

E-mail address: 1eemy@dankook.ac.kr



