Commun. Korean Math. Soc. 22 (2007), No. 2, pp. 289-295

PRODUCT OF PL FIBRATORS AS CODIMENSION-k
FIBRATORS

YounGg Ho IM AND YONGKUK KM

ABSTRACT. We describe some conditions under which the product of two
groups with certain property is a group with the same property, and we
describe some conditions under which the product of hopfian manifolds
is another hopfian manifold. As applications, we find some PL fibrators
among the product of fibrators.

The question of whether the collection of codimension-k PL fibrators is
closed under the Cartesian product operator remains unsolved but seems un-
likely, in view of the examples described in [6]. As some effort to solve the
question in [7], we give some partial answers.

1. Definitions and Notation

A proper map p: M — B between locally compact ANRs is an approrimate
fibration, a concept introduced and studied by Coram and Duvall [1] [2], if it
has the following approximate homotopy lifting property: given an open cover
Q of B, an arbitrary space X, and maps f : X - M and F: X xI — B
satisfying pf = Fp, there exists a map F' : X x I — M such that F} = f and
pF’ is Q-close to F. The latter means that each € X corresponds U, € Q
with {pF'(z), F(z)} C U,.

Fibrator properties of manifolds afford quick detection of approximate fi-
brations. Throughout the rest of this paper all manifolds are oriented PL
manifolds. When N is a fixed closed PL n-manifold, M is a PL manifold, B
is a polyhedron, and p: M — B is a PL map, then p is said to be N-like if
each p~1(b) collapses to an n-complex homotopy equivalent to N. We call N
a codimension-k PL fibrator if, for every PL (n+k)-manifold M and N-like PL
map p : M — B, p is an approximate fibration. If N is a codimension-k PL
fibrator for all k¥ > 0, we simply call N a PL fibrator.
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A group T is said to be: hopfian if each epimorphism I' — T is an iso-
morphism; cohopfian if each monomorphism I' — T' is an isomorphism; and
normally cohopfian if each monomorphism I' — I" with image a normal sub-
group of I' is an isomorphism. Moreover, I' is sparsely abelian if it contains
no nontrivial abelian normal subgroup A such that I'/A is isomorphic to a
normal subgroup of I. Groups I' that are both sparsely abelian and normally
cohopfian have the useful feature that every homomorphism I' — T" with, at
worst, abelian kernel and normal image necessarily is an automorphism. For
brevity a group I' which is both normally cohopfian and sparsely abelian will be
said to have Property NCSA. This Property is useful for detecting rich fibrator
properties: a closed, aspherical, orientable n-manifold N is known to be a PL
o-fibrator if it is a codimension-2 PL o-fibrator and m; (V) has Property NCSA
(5, Theorem 8.1]. )

The (absolute) degree of a map is computed with integer coefficients and
is understood to be a nonnegative number. Explicitly, a map f : N — N’
between closed, orientable n-manifolds is said to have degree d if there are
choices of generators v € H,(N;Z),y € H,(N’;Z) such that f.(y) = dv/,
where d > 0 is an integer. A closed, orientable manifold N is said to be
hopfian if every degree 1 map N — N which induces an isomorphism at the
fundamental group level is a homotopy equivalence. As a result, when 71 (V)
is a hopfian group, N is a hopfian manifold if and only if all degree 1 maps
N — N are homotopy equivalences. According to Hausmann {11, Proposition
1], every closed orientable manifold of dimension at most 4 is hopfian.

2. Products of PL fibrators

In this section we discuss fibrator properties of products of hopfian mani-
folds. Say that a group G is incommensurable with another group K if there is
no nontrivial homomorphism G — K, and a group G is hereditary incommen-
surable with another group K if there is no nontrivial homomorphism H — K
for any subgroup H of G. For example, perfect groups are incommensurable
with all Abelian groups; finite groups, with torsion free groups; and infinite
simple groups, with finite groups. In particular, finite groups are hereditary
incommensurable with torsion free groups.

Lemma 2.1. If G and K are normally cohopfian groups such that G is incom-
mensurable with K, then G x K 1is normally cohopfian.

Proof. Let ¢ : G x K — G x K be a monomorphism with ¢(G x K) normal in
G x K. Consider the following diagram

¢1 = prio¢ojy

G 7 pT1 G,
\i /’

GxK—?;GxK

< N

K

¢2 = praogojs
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where j; and jo are inclusions, and pry and pry are projections. Write, for any
rEGandye K,

¢(z,1) = (¢1(2),91(2)), ¢(1,9) = (¥2(y), b2(v))-

Then ¢ : G — G,¢1 : G — K, : K —» K and ¢, : K — K are homomor-
phisms. From the fact that pra o ¢ 0 j;(G) is trivial, we have pro 0 ¢(G x K) =
pra o ¢ o jo(K). Hence we have the following commutative diagram

0 G 2 GexKk 2K 0
¢1l ¢l ¢2l
0 G 2, GxK 2 K 0,

where the horizontal sequences are exact sequences of groups. Note also that
for any (z,y) € G x K,

(b(m,y) = ¢((x7 1)(1ay)) = ¢($, 1)¢(1ay>
= (#1(z), 1)(¥2(y), d2(y)) = (d1(2)¥2(y), $2(y)).

Now we show that ¢; and ¢2 are isomorphisms. Then applying the Five-
Lemma, we have that ¢ is an isomorphism.

First, we claim that ¢ is an isomorphism. For y € Kergy, prs o ¢(1,y) =
¢2(y) = 1 and so ¢(1,y) € G x 1. Since ¢(1,y) = (2(y), d2(y)) = (1,1)
and ¢ is a monomorphism, y = 1 and ¢ is also a monomorphism. But since
$2(K) = praod(Gx K)<K and K is normally cohopfian, ¢ is an isomorphism.

Next, we show that ¢; is an isomorphism. Now we have known that ¢, is
injective. To show that ¢1(G) is normal in G, for any z,g € G, one wants to
have gé1(x)g™! € ¢1(G). To have this, one may observe (g, 1)é(z,1)(g,1)~! =
(g9¢1(z)g~1,1). Since ¢(G x K) is a normal subgroup of G x K, it follows
that (g¢1(z)g™1,1) € ¢(G x K). This means that (g¢1(x)g~ ", 1) = ¢(a,b) =
(¢1(a)y2(b), p2(b)) for some (a,b) € G x K with b € ker(¢o). Since ¢ is
injective, b = 1 and so 92(b) = 1. Thus g¢1(z)g™! = ¢1(a) € ¢1(G), which is
required. Since ¢y is a monomorphism, by the normal cohopfianness of G, ¢;
is an isomorphism. a

Lemma 2.2. Suppose G is a sparsely abelian group and K is a group with no
non-trivial abelian normal subgroup such that G is hereditary incommensurable
with K, then G x K is sparsely abelian.

Proof. Suppose G x K is not sparsely abelian. Then, there is a non-trivial
abelian normal subgroup N in G x K such that (G x K)/N is isomorphic to a
normal subgroup of G x K, i.e., there is a homomorphism ¢ : G x K — G x K
such that ker ¢ = N, and im ¢ is a normal subgroup of G x K. Consider
$p1 =priogoji:G— G, g2 =praogoje: K — K, and N; = ker ¢; for
1 = 1,2. The fact that K has no non-trivial abelian normal subgroup implies
pro(N)=1,andso N C G x 1.
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Now we show that Ny x1 = N. For (z,1) € N1 x1, ¢1(x) = priod(z,1) = 1.
Then ¢(z,1) € 1 x K. By the incommensuribility of G with K, we have
#(z,1) € G x 1. Hence, we have ¢(z,1) = (1,1) and (z,1) € N. Conversely,
since N C G x 1, for (z,1) € N, ¢(z,1) = (1,1) and (z,1) € Ny x 1.

Next we show that ¢(G x 1) = ¢(G x K)NG x 1. By the incommensurability
of G with K, ¢(G x 1) C G x 1, and then ¢(G x 1) C ¢(G x K)NG x 1.
For (g,1) = ¢(z,y) € ¢(G x K)NG x 1, ¢(z,y) = ¢(z,1)$(1,y). Then
#(l,y) € Gx 1. Since N = N; x 1 and ¢ : (G/N1) x K = ¢(G x K), we have
Y| (G/N1) x 1 =2 ¢(G x 1) and Y| : 1 x K = ¢(1 x K). If ¢(1,y) # (1,1),
we consider the cyclic subgroup K’ of K generated by y. Then we have the
nontrivial well-defined isomorphism 1¥~1 : ¢(1 x K') — 1 x K’ C 1 x K, where
#(1x K') is a subgroup of Gx 1. Since G is hereditary incommensurable with K,
¥~ is trivial and so ¢(1,y) = (1,1). As a result, ¢(z,y) = ¢(z,1) € ¢(G x 1)
and ¢(G x 1) is a normal subgroup of G x 1.

From the fact that G is a sparsely abelian group, V; x 1 = N must be
trivial. g

Remark. For a closed aspherical manifold N with x(N) # 0, m1(/V) has no
nontrivial abelian normal subgroup by work of Rosset [16].

Now we consider the conditions under which the product of two hopfian
manifolds is hopfian. For a given two hopfian manifolds N; and N, consider
the following diagram

f1 = priofosa
\jl pr1
f e
N1 X Ng —_— N1 X N2

t/j: m
N, - Ny
f2 = praofojz

N

Nla

where j; and jo are inclusions, and pr; and pro are projections.

Lemma 2.3. Suppose that dim N =n and dim Ny = m with m < n. If deg
f=1and Bi(N1) =0 for 1 <i < min{m, 5}, then deg f1 = 1= deg fa.

Proof. The fact that deg f = 1 implies that f. : Hx(N1 x No) — Hg(Ny X Na)
is an isomorphism for every k > 0. Since §;(N1) = 0 for 1 <4 < min{m, ¥} and
Hn(Nl X N2) = [Hn(N1)®H0(N2)]@[Z:n=1 Hn_i(N1)®Hi(N2)]EBTOTS'iOTLS and
Hp (N1 X No) = [Ho(N1) @ Hn(N2) | Y 1e ) He(N1) ® Hyp—i(N2)] @ Torsions,
we have that the free part of H,(N; x Na) is H,(N1) ® Ho(N2) = Z and
H,, (N1 x Ng) is Hy(N1) @ Hp(Ng) 22 Z. Therefore, deg f1 =1 =deg fo. O
Remark. The argument of the proof above cannot be applied for the case
dim N1 = n,dim Ny = m with m = n, since H,(Ny x Np) = [H,(N1) ®
Ho(N2)] @ [0 Hooi(N1) ® Hi(N2)] @ [Ho(N1) ® Ho(N2)] ® Torsions =
Z® Y05 Ho-i(N1) ® Hi(N2)] ® Z @ Torsions.
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Lemma 2.4. If fi and fy homotopy equivalences and for all k, fr, (m(IN1) X
1} € m(N1) x 1, then f is a homotopy equivalence.

Proof. Since 7 (N1 x N2) = 7, (N1) X7k (N2), by the Five Lemma frr, : 7 (N1 ¥
Nj) — m (N1 X No) is an isomorphism for all k. Apply the Whitehead Theorem.
g

Theorem 2.5. Suppose that NJ*, NJ* are hopfian manifolds with m < n and
m1(N1) 1s tncommensurable with 7r1(N2) If Bi(N1) = 0 for 1 <4 < min{m, 3},
Hm= 1(N1) = 0, where N1 is the unwersal covering of N1, and my(N3) = 0 for
2 <k <m-—2, then NJ* x NJ* is a hopfian manifold.

Proof. Let deg f =1 and f induce m—isomorphism. By Lemma 2.3, deg f; =
1 = deg fa. From the incommensurability of m1(N1) of 1r1(N2) fi and fo
induce m; —isomorphisms. The homotopy classes of maps N1 — Ns are in 1-1
correspondence with those of maps A 11— Ng, where N2 is the universal covering
of N;. By the obstruction theory (12, Corollary VI. 16.4], the latter are in 1-1
correspondence with H™~ Y(Ny; om—1(Na)) 2 H™ (N3 Z) ® Tom—1(N2) 0.
Hence, all maps Nl — Ny are null-homotopic. Lemma 2.4 assures that Ny x N,
is hopfian. ]

We state the following main result of this section.

Theorem 2.6. Suppose N1 and Ny are t-aspherical closed, PL manifolds whose
fundamental groups are normally cohopfian and N = N1 x N» is a hopfian PL
manifold which is a codimension-2 PL fibrator. Suppose w1(Ny) is hereditary
incommensurable with w1 (Ny), 71 (N1) is sparsely abelian and w1(N3) has no
nontrivial abelian normal subgroup. Then N is a codimension-(t+1) PL fibra-
tor.

Proof. By Lemma 2.1 and Lemma 2.2, N has Property NCSA. Since N; and Ny
are t-aspherical, so is N. According to [9, corollary 2.6], N is a codimension-
(t+1) PL fibrator. g

Corollary 2.7. Suppose that NT* is a hopfian t-aspherical manifold with x(N7)
# 0 and B;(N1) = 0 for 1 < i < min{m, 3}, and that NJ* is aspherical manifold
with x(N2) # 0 such that m < n. If my(N1) has Property NCSA and is the
hopfian group, and is incommensurable with the hopfian group m1(Nz2). Then
N1 X Ny is a codimension-(t + 1) PL fibrator.

Proof. Let G = m(N1) and K = m1(N3). It suffices show that G x K is a
hopfian group; then N; x N; is a codimension-2 PL fibrator.
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Suppose that ¢ : G x K — G x K is an epimorphism. Since G is incommen-
surable with K, as before we have the following commutative diagram

0 G ", GxK 2, K 0
¢1l ¢l ¢2l
0 G I . GexK LK 0,

where the horizontal sequences are exact sequences of groups. Here ¢o must
be an epimorphism since ¢ is onto, and then ¢s is an isomorphism since K is
hopfian. By simple diagram chasing, we have that ¢; is an epimorphism. But
since GG is hopfian, ¢; is an isomorphism. Now apply the Five Lemma. O

Lemma 2.8. [7, Corollary 3.8] Suppose that N*, Ni* are hopfian manifolds
with 7(N2) = 0 for all & > 2. If (1) m(N1) is finite, or of (2) m(Ny) is
solvable and x(Nz) # 0, then NP x NI* 4s a hopfian manifold.

Corollary 2.9. Suppose Ny is a closed, orientable t-aspherical n—manifold
with finite, sparsely abelian fundamental group and x(N1) # 0, and Ns is a
closed, orientable aspherical m—manifold with hopfian fundamental group and
x(N2) # 0. Then N1 x Ny is a codimension-(t + 1) PL fibrator.

Proof. First, note that N1 x Ny is a codimension-2 fibrator [4, Theorem 5.10].
Work of Rosset [16] implies 71 (N2) has no nontrivial abelian normal subgroup.
Lemma 2.1 and Lemma 2.2 confirm that 71 (N7 x N2) has Property NCSA.
Therefore, the conclusion follows from Theorem 2.6. a

Corollary 2.10. Suppose Ny is a closed,orientable t-aspherical n—manifold
with nilpotent, sparsely abelian fundamental group and x(N1) # 0, and Ny is
a closed, orientable aspherical m—manifold with residually finite fundamental
group and x(N2) # 0. Then Ny X N2 is a codimension-(t + 1) PL fibrator.

Proof. By [7, Corollary 3.9], N1 x N is a hopfian manifold. Also m1(N; x Na)
is a finitely generated residually finite group, and hence hopfian group. O

Corollary 2.11. Suppose N; is a closed t-aspherical, hopfian n—manifold with
finite, hyperhopfian, sparsely abelian fundamental group, and Nj is a closed
aspherical m—manifold with hyperhopfian fundamental group. If x(Na) # 0,
then N1 x N is a codimension-(t+1) PL fibrator.

Proof. Since N = Nj x N3 is a hopfian manifold with hyperhopfian fundamental
group, N is a codimension-2 fibrator [4, Theorem 5.4]. Lemma 2.1 and Lemma
2.2 imply that 71 (V) has Property NCSA. By Theorem 2.6, N7 x Ny is a
codimension-(t+1) PL fibrator. 0
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