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ON A SYSTEM OF GENERALIZED NONLINEAR
VARTATIONAL INEQUALITIES

JINGCHANG L1, ZHENYU GUO, ZEQING LI1U, AND SHIN MIN KANG

ABSTRACT. In this paper a new class of system of generalized nonlinear
variational inequalities involving strongly monotone, relaxed cocoercive
and relaxed generalized monotone mappings in Hilbert spaces is intro-
duced and studied. Based on the projection method, an equivalence be-
tween the system of generalized nonlinear variational inequalities and the
fixed point problem is established, which is used to suggest some new it-
erative algorithms for computing approximate solutions of the system of
generalized nonlinear variational inequalities. A few sufficient conditions
which ensure the existence and uniqueness of solution of the system of
generalized nonlinear variational inequalities are given, and the conver-
gence analysis of iterative sequences generated by the algorithms are also
discussed.

1. Introduction and preliminaries

It is well known that the variational inequality theory has been extended and
generalized in many different directions to study a wide class of problems aris-
ing in mechanics, physics, optimization and control, nonlinear programming,
economics and transportation equilibrium and engineering sciences, etc. For
details, we refer the reader to [1, 3-9] and the references therein.

Recently, some interesting and important problems related to variational
inequalities and complementarity problems have been studied by many authors.
For example, Verma [5-8] studied the approximation-solvability of a few kinds
of systems of variational inequalities in Euclidean spaces and Hilbert spaces,
respectively. Wu, Liu, Shim and Kang [9] also introduced a more general class
of systems of variational inequalities than that in Verma [8] and extended the
corresponding results of other authors in this field.

Motivated and inspired by the above works, in this paper, we introduce
and investigate a new system of generalized nonlinear variational inequalities
dealing with strongly monotone, relaxed cocoercive and relaxed generalized
monotone mappings in Hilbert spaces. We prove the existence and uniqueness
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of solution for the system of generalized nonlinear variational inequalities, con-
struct some new algorithms for computing approximate solutions of the system
of generalized nonlinear variational inequalities, and discuss the convergence of
iterative sequences generated by the algorithms. The results presented in this
paper improve, extend and unify many known results in the literature.

Let H be a real Hilbert space with the inner product (-,-) and norm || - ||,
respectively. Let A, B,C,D : H — H be any mappings, M,N : H x H —» H
nonlinear mappings, and K a nonempty closed convex subset of H. Let « and
0 be positive constants, and f and g be arbitrary elements in H. Consider the
following problem:

Determine elements z,y € K such that

(11) <Ol(M(A(y),B(y)) —f)+x—y,u—a:> > Oa
(BIN(C(z),D(z)) —g) +ty—=z,u—y) 20, VueK,

which is known as the system of generalized nonlinear variational inequalities.
IfA=C,B=D,and M(z,y) = N(z,y) =z —y for all 2,y € K, then the
problem (1.1) is equivalent to finding z,y € K such that

(1.2) (a(A(y) = B(y) - f)+z—y,u—z) >0,
(B(A(z) - B(z)—g)+y-z,u—y) >0, VueEk,

which is introduced and studied by Wu, Liu, Shim and Kang [9].
IfA=C,f=9g=0,and M(z,y) = N(z,y) = z for all z,y € K, then the
problem (1.1) reduces to the following one: find z,y € K such that

{(aA(y)+w—y,u—:v) >0,

(13) (BA(x) +y—z,u—y) 20, YVuck,

which is called the system of nonlinear variational inequalities, see Verma [8].
For suitable and appropriate choices of elements f, g and the mappings M,
N, A, B, C, D, we can get various new and previously known systems of
variational inequalities as special cases of the system of generalized nonlinear
variational inequalities (1.1).
Now we recall and introduce the following results and concepts.

Lemma 1.1. For a given z € H, the element u € K satisfies the following
mequality
(u—2z,v—u) >0, YveK,
if and only if u = Pg(2), where Px is the projection of H into K.
Fuyrthermore, Pk is nonexpansive, that is,

I1Px(z) — Px ()l < llz —yll, Va,ye H.

Lemma 1.2 ([2)). Let {an}n>0, {bn}n>0, {en}n>0 and {tn}n>0 be sequences
of nonnegative numbers satisfying

nt1 < (L —=tp)an +tnbp +cn, YR >0,
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where {tn}nZO - [Oa ]-]a Zflo:() tn = 400, limy oo by = 0 and ZZOZ() Cp < F00.
Then lim,, o0 ay, = 0.

Definition 1.1. Let 7 : H — H be a mapping. T is said to be t-Lipschitz
continuous if there exists a constant ¢ > 0 satisfying

|Tx — Ty|| <tz —yll, VYz,ye€ H.

Definition 1.2. Let 7' : # — H and M : H x H — H be two nonlinear
mappings. M is said to be
(1) t-Lipschitz continuous in the first argument if there exists a constant
t > 0 satisfying
| M(z,u) — M(y’u)“ <tlz—yl, Vz,y,ueH,;
(2) t-strongly monotone with respect to T' in the first argument if there exists
a constant ¢ > 0 satisfying

(M(T(z),u) = M(T(y),u),z —y) 2 the —yl?, Vo,y,u€ H;
(3) t-relazed generalized monotone with respect to T in the first argument if
there exists a constant ¢t € (0, 1) satisfying
(M(T(z),u) — M(T(y),u),z—y)
> =t M(T(@),u) = MT(y),ull -z =yl wryrw sy

(4) (h,r)-relazed cocoercive with respect to T' in the first argument if there
exist constants A > 0 and » > 0 satisfying

<M(T(l‘), u) - M(T(y)vu)’m - y)
> hllz =yl = 7|T(x) ~ T, Vz,y,ueH.

Similarly we can define the Lipschitz continuity of M in the second argument.

2. Main results

Lemma 2.1. Let o and 8 be positive constants, and f and g be arbitrary
elements in H. Then the following statements are equivalent:

(a) the system of generalized nonlinear variational inequalities (1.1) has a
solution (z,y) € K x K;

(b) there exists (z,y) € K x K satisfying

(21) z = Pg(y — a(M(A(y), B(y)) — f))
and
(2.2) y = Px(z — B(N(C(z), D(z)) — 9));

(c) the mappings F and G : H — H defined by
F(u) = Px{Pr[u— B(N(C(u), D(v)) - g)]
(2.3) — a[M(A(Px (u ~ B(N(C(u), D(u)) - 9))),
B(Pg(u— B(N(C(u), D(u)) - 9)))) — f]}, Yue€H,
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and
G(u) = Px {Pk [u — a(M(A(uv), B(v)) — f)]
(2.4) ~ B[N (C(Px(u — a(M(A(w), B(uw)) ~ f))),
D(Px (u—a(M(A(u), Bw)) ~ f)))) ~ 9]}, VueH
have fized points z,y € H, respectively, satisfying (2.1) or (2.2).

Proof. By Lemma 1.1, (a) is equivalent to (b) clearly. Suppose that (b) holds.
It follows from (2.1) and (2.2) that

z = Px(y — o(M(A(y), B(y)) - f))
= Pg{Px [z — B(N(C(z), D(z)) - g)]
— a[M(A(Pk(z — B(N(C(z), D(z)) — 9))),
B(Px(z — B(N(C(z), D(z)) - 9)))) — f]} = F(x)

y = Px(z — B(N(C(z), D(z)) — g))
= Px{Px [y — a(M(A(y), B(y)) - f)]
= BIN(C(Px(y — a(M(A(y), B(y)) - 1)),
)

D(Px(y — (M (A(y), B(y) — ) — 9]} = G(y),
that is, (c) holds.
Conversely, if (c) holds, without lose of generalization, suppose that the fixed
points z and y of F' and G satisfy (2.1). From (2.4), we derive that

y=Gy)
=PK{PK[ —a(M(A(y), B(y)) —f)]
— B[N(C(Px(y — a(M(A(y), Bly)) — £))),
D(Px(y — ao(M(A(y), B(y)) = ) — 9]}
= Px(z - B(N(C(z), D(2)) - 9))-
Therefore, (b) holds. This completes the proof. O

Remark 2.1. Lemma 1.3 of Verma [8] and Lemma 2.1 of Wu, Liu, Shim and
Kang [9] are special cases of Lemma 2.1.

and

Based on Lemma 2.1, we suggest the following general iterative algorithms
for the system of generalized nonlinear variational inequalities (1.1).

Algorithm 2.1. For any elements zg,yo € H, compute sequences {xn}n>0
and {Yn}n>o by the following iterative procedures

Sn = (1 — cn)xn + cnF(xn) + pn,

Tnt1 = (1 = an)Tn + anF(8n) + tn,

tn = (1 — dn)zn + dnG(yn) + gn,

Yt = (1= bo)n + buGltn) +vny, V>0,

(2.5)
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where F and G are defined by (2.3) and (2.4), respectively, {an}n>0, {bn}n>0,
{cn}n>0 and {dn}n>0 are any sequences in [0,1] and {pn}n>0,{qn}n>0, {tn}n>0
and {vy}n>0 are arbitrary sequences in H satisfying

o0 o0
Z min{an, by} = +o0, Zmax{”unll, lunll} < +o0,
(2'6) n=0 n=0

and nh-{%o max{|[pall, lgnl} = 0.

Algorithm 2.2. For any elements xo,y0 € H, compute sequences {Tntn>0
and {Yn}tn>0 by the following iterative procedures

Yn = PK(xn - ﬁ(N(C(xn)’ D(x'n)) - g)) + Un,
(2.7) Tne1 = (1 — an)zn
+ anPr (yn — a(M(A(yn), B(yn)) — f)) + vn, V20,

where {an }n>0 is any sequences in [0,1] and {up }n>0 and {vp}n>0 are arbitrary
sequences in H satisfying

o0 <
(2.8) Zoan = 400, nlggo lunll =0, and Z Jun]l < +00.
o

n=0

If |lpnll = llgnll = lunll = |lvall = 0 for all n > 0, Algorithms 2.1 and 2.2
reduce to the following iterative algorithms, respectively.
Algorithm 2.3. For any elements zo,y0 € H, compute sequences {Zn}n>0
and {yn }n>0 by the following iterative procedures
Sn = (1 = cp)xn + cnF(zy),
Tpt1 = (1 = )T + anF(sn),
tn = (1 — dn)zn + dnG(yn),
Yn+1 = (1 - bn)yn + bnG(tn)a VYn > 0,
where {an}n>0, {bntn>0, {€n}n>0 and {dy}n>0 are any sequences in [0, 1] sat-
. . oo '
isfying ¥ p.omin{an, bp} = +o0.

(2.9)

Algorithm 2.4. For any elements xo,y0 € H, compute sequences {Zn}n>0
and {yn}n>0 by the following iterative procedures

Yn = Pr(zn — B(N(C(zn), D(zn)) — 9)),
(2.10) Tng1 = (1= an)zn
+ anPx (yn — a(M(A(yn), B(yn)) — f)), V¥n >0,
where {an}n>0 15 any sequence in [0,1] satisfying > oo an = +00.

Theorem 2.1. Let A,B,C,D : H — H be Lipschitz continuous with constants
a,b,c,d, respectively. Let M : H x H — H be mq-Lipschitz continuous in
the first argument, mo-Lipschitz continuous in the second argument, p-strongly
monotone with respect to A in the first argument, and q-relazed generalized
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monotone with respect to B in the second argument. Let N : H x H — H
be ny-Lipschitz continuous in the first argument, na-Lipschitz continuous in
the second argument, and (h,r)-relazed cocoercive with respect to C in the first
argument. If there exist positive constants o and 3 satisfying

0 = /1 - 2a(p — bmag) + o2(amy + bmy)?
X (\/1 —26(h — 2r) + B2c2n? + Bdng) < 1,

then for any given f,g € H, the system of generalized nonlinear variational
inequalities (1.1) has a unique solution (z,y) € H x H.

(2.11)

Proof. It follows from the hypothesis that

IF(w) — F(v)||?

= ||Px { Pk [u— B(N(C(x), D(u)) — g)]
— a[M(A(Px (u— B(N(C(u), D(u)) - g))),
B(Pg (u— B(N(C(u), D(u)) — g)))) - f]}
— Px{Px[v— B(N(C(v), D(v)) - g)]
— a[M(A(Pk (v - B(N(C(v), D (v))—g)))
B(Px (v — B(N(C(v), D(v)) —

< || Pie [ — B(N(C (), D(w)) — )]
—PK[v—ﬂ( (C(v) D( ) = 9)]

B(PK(u—ﬂ(N( ( U)) - 9))))
~ M(A(Pk(v—p (N(C(v) () = 9)),
B(Pg (v~ B(N(C(v), D(v)) — 9))) }I?

= ||Px [u — B(N(C(u), D(w)) — g)]
— Px[v — B(N(C(v), D(v)) — g)]II?
— 2Pk [u — B(N(C(u), D(u)) — g)]
— Px[v— B(N(C(v), D(v)) — 9)],
M (A(Px (u — B(N(C(u), D(u)) — 9))),
B(Px(u — B(N(C(u), D(u)) - g))))
— M(A(Pxg (v — B(N(C(v), D(v)) — 9))),
B(Px(v - B(N(C(v), D(v)) - 9)))))
+ || M (A(Pk (u — B(N(C(u), D(w)) - g))),
B(Px(u— B(N(C(w),D(u)) - 9))))
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— M(A(Px (v - B(N(C(v), D(v)) — 9))),
B(Pk (v~ B(N(C(v), D(v)) — )|
(

B(Pk (u— B(N(C(u), D(u)) — 9)))
— M(A(Pk (v — B(N(C(v), D(v))
B(Pk (u— B(N(C(u),D(u)) — g))
— 2a(Px [u — B(N(C(u), D(u)) - g)]
~ Px[v— B(N(C(v), D(v))
M (A(Pk (v — B(N(C(v), D(v))
B(Pg (u— B(N(C(u), D(u)) —
~ M (A(Px (v~ B(N(C(v),D(v
B(Pg(v—B(N(C(v),D
+ o*|| M (A(Pk (u — B(N(C(u),
B(Px(u— B(N{(C(u),D
— M(A(PK(U —B(N(C(v
B(Px (u— B(N(C(u), D(u)) —
+ M (A(Px (v — B(N(C(v),D
B(Pk (u— B(N(C(u), D(u)) —
— M (A(Pk (v — B(N(C(v), D(v)) = 9))),
B(Pk (v - B(N(C(v),D(v)) — g
< ||Px [u ~ B(N(C(u), D(u)) — )]
— Pi[v — B(N(C(v),D(v)) —
— 2ap|| Px [u — B(N(C(u), (U)) 9]
D(u

R

~—
~——
~—

— Px [v~ B(N(C(v),D(v)) - 9)]II”
+2aq||Px [u — B(N(C(u), D(u)) —
— Pg[v - BIN(C(v), D(v)) - 9]
x || M (A(Px (v — B(N(C(v), D(v)) — 9))),
B(Px (u— B(N(C(u), D(w)) ~ 9))))

9]



254 JINGCHANG LI, ZHENYU GUQ, ZEQING LIU, AND SHIN MIN KANG

— M(A(Pg (v~ B(N(C(v), D(v)) - 9))),
m&@“m((WD@)ng
+ o?(amy + bmy) ||PK[ - (C(u), D(u)) — g)]
‘J%@“MNWW)(U) HW
< (1 - 2a(p ~ bmag) + o®(amy + bmy)?)
X || Pr [u — BN (C(w), D(u) — g)]
— Px[v— B(N(C(v),D(v)) - 9)]|I”
< (1 -2a(p - bmag) + o (amq + bmz)Q)
X |l = v = B(N(C(u), D(w)) — N(C(v), D(w)))|*
< (1 - 2a(p ~ bmag) + o*(amy + bma)?)
x ([lu = v — B(N(C(u), D(w)) ~ N(C(v), D(w)))l
+ BIN(C(v), D(w)) = N(C(v), D))’
< (1 - 2a(p — bmag) + o®(amy + bmy)?)
x [(Ilu = v||* = 28(u — v, N(C(u), D(u)) = N(C(v), D(u)))
+ BIN(Cw), D(w) - N(C(v), D(u))|?)*
+ Bna|| D(u) ~ D(v)]}”
< (1 - 2a(p — bmag) + o*(amy + bms)?)
x [(Ilu = v]|* = 28(hllu — v||* = rl|C(u) = C(v)|*)
+ FPndu — vl?)* + Bdnallu — ]’
< (1 — 2a(p ~ bmagq) + o (am + bm2)2)
X (\/1 —2B8(h — ) + f2c2n? + ﬁdn2)2||u —vl?
=0?|u—v|? WVu,v€H,

that is,
(2.12) |1F(u) = F(v)|| < 0)lu—v]], Yu,veH

Therefore, F is a contraction mapping, moreover, it has a unique fixed point
x € X. Similarly, we derive that G has also a unique fixed point y € X.

Now we prove that x and y satisfy (2.1).

Put z = Px(y — a(M(A(y), B(y)) — f)). Asy is a fixed point of G, we have

y=G(y)
= Pi{Pk [y — o(M(A(y), Bw)) — )]
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= BIN(C(Px(y — a(M(A(y), B(y) — £))),
(2.13) D(Px(y — o(M(A(y), B(v)) = £)))) — 9]}
= Pr(z = B(N(C(2), D(z)) - 9)).
From (2.13), it is easy to see that

F(z) = Px{Px[z — B(N(C(2), D(2)) — g)]
(214) — a[M(A(Px (2 - B(N(C(2), D(2)) — 9))),
' B(Pg(z — B(N(C(z), D(2)) - 9)))) — f]}

= Px(y — o(M(A(y), Bly)) - f)) = 2.

(2.14) ensures that z is a fixed point of F. While z is the unique fixed point of
F in X, hence z = z = Px(y — a(M(A(y), B(y)) — f)). That is, (2.1) holds.
It follows from Lemma 2.1 that the system of generalized nonlinear variational
inequalities (1.1) has a solution (z,y) € H x H.

Next we claim that (x,y) is the unique solution of the system of generalized
nonlinear variational inequalities (1.1). In fact, if (u,v) € H x H is also a
solution of the system of generalized nonlinear variational inequalities (1.1), by
Lemma 2.1, we infer that v = F(u) and v = G(v). By the uniqueness of fixed
points of F" and G, respectively, we know that u = x and v = y. This completes
the proof. O

Theorem 2.2. Let the assumptions in Theorem 2.1 hold. If there exist pos-
itive constants « and (3 satisfying (2.11), then for any given f,g € H, the
system of generalized nonlinear variational inequalities (1.1) has a unique so-
lution (z,y) € H x H and liMp—o0 Tn, = & and limy,_, o0 ¥, = y, where {Zatn>o0
and {yn}n>o are defined by Algorithm 2.1.

Proof. Tt follows from Theorem 2.1 that the system of generalized nonlinear
variational inequalities (1.1) has a unique solution (z,y) € H x H. Now we
prove that the sequences {@n}n>¢ and {yn}n>0 generated by Algorithm 2.1
converge strongly to z and y, respectively. It follows from the proof of Theorem
2.1 that (2.12) holds. In light of (2.5) and (2.12), we infer that

l[sn — || = [|(1 — cn)(@n — @) + cn(F(zn) — F(2)) + pall
< (1= cn)llzn — 2 + cnl Fzn) — F()]| + llpnll
< (1 —cn)llon — 2|l + cabllzn — 2| + [|pnl
<llen — 2l + llpall, Vnz0
and
[@nt1 — ]|
=1 = an)(@n — 7) + an(F(sn) = F(z)) + ual|
< (1 =an)llzn — @l + anl|F(sn) — F()]| + luall
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< (= an)llzn — 2l + anbllsn — 2| + |lun
< (1= (1 - 0)an)llzn ol + anllpall + [unl, Vn 20,
where F is defined by (2.3). Similarly, we can get that
[yna1 —yll < (1= (1 = 0)bn)llyn — vl
+ bnllgn| + llvnll, Vn >0.

From Lemma 1.2, (2.6), (2.15) and (2.16), it follows that lim, . z, = = and
lim,,— o yn = y. This completes the proof. a

(2.15)

(2.16)

Theorem 2.3. Let the assumptions i Theorem 2.1 hold. If there exist pos-
itive constants a and B satisfying (2.11), then for any given f,g € H, the
system of generalized nonlinear variational inequalities (1.1) has a unique so-
lution (x,y) € H x H and limy,_,0 Tn = = and liMy,_,00 Yn = y, where {Zn}n>0
and {yn}n>0 are defined by Algorithm 2.2.

Proof. Theorem 2.1 ensures that the system of generalized nonlinear variational
inequalities (1.1) has a unique solution (z,y) € H x H. Now we claim that the
sequences {Zn }n>0 and {yn}n>0 generated by Algorithm 2.2 converge strongly
to z and y, respectively. As in the proof of Theorem 2.1, we conclude that

lyn — yli
= || Pk [£n — BIN(C(@n), D(En)) = 9)] + tn
- Px[z - B(N(C(2), D(z)) — 9)]
@17 <oy — 2 — BIN(C(2n), D(3a)) — N(C(=), D(@))]]| + llunl
< (1~ 28(h — ¢2r) + B2c3n3 + Bdns) |12 ~ 3|
+llunll, Va0,

and
@n+1 — ||
= (1 = an)n + anPr (yn — (M (A(yn), B(yn)) — f)) + vn
~[(1 = an)z + an Pk (y — a(M(A(y), B(y)) — H)I
< (1 —an)l|zn — x|l + anllyn — (M (A(yn), Blyn)) — f)
~ly — a(M(A(y), B(y)) — H + llvall
(2.18)

< (I =an)lzn —zll + anllyn — y

— a[M(A(yn), B(yn)) — M(A(y), B)Ill + [lvall
<(1- an)l|lzn — x|

+any/1 = 2a(p — bmag) + a2(ama + bma)?|lyn — yll + flonll
< (1 -1 =0an)lzn = 2l + anlunll + [[vall, Vn = 0.

Lemma 1.2, (2.8) and (2.18) ensure that lim,_, o £, = . Moreover, it follows
from (2.8) and (2.17) that lim,_, y» = y. This completes the proof. O
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As in the proof of the Theorems 2.1, 2.2 and 2.3, we have the following
results.

Theorem 2.4. Let the assumptions in Theorem 2.1 hold. If there exist pos-
itive constants o and (3 satisfying (2.11), then for any gwen f,g € H, the
system of generalized nonlinear variational inequalities (1.1) has a unique so-
lution (z,y) € H x H and limy—,c0 T, =  and iMoo Yn = y, where {Tn}n>o
and {yn}n>0 are defined by Algorithm 2.3.

Theorem 2.5. Let the assumptions in Theorem 2.1 hold. If there exist pos-
itive constants o and (3 satisfying (2.11), then for any given f,g € H, the
system of generalized nonlinear variational inequalities (1.1) has a unique so-
lution (z,y) € H x H and limy 0 T, =  and imp_o Yn = y, where {Tn}n>0
and {yn}n>o are defined by Algorithm 2.4.

Remark 2.2. Theorems 2.1~2.5 extend, improve and unify Theorems 2.1~2.3
in Verma [8] and Theorems 2.1~2.5 in Wu, Liu, Shim and Kang [9].
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