References
- T. A. Burton, Stability and Periodic Solution of Ordinary and Functional Differential Equations, Academic Press, Orland, FL., 1985
- R. E. Gaines and J. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Math., 568, Spring-Verlag, 1977
- G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, London: Cambridge Univ. Press, 1952
-
X. Huang and Z. G. Xiang, On existence of
$2{\pi}$ -periodic solutions for delay duffing equation x'' + g(t, x(t -${\tau}$ (t))) = p(t), Chin. Sci. Bull. 39 (1994), no. 3, 201-203 - S. Lu and W. Ge, Periodic solutions for a kind of Lieneard equations with a deviating argument, J. Math. Anal. Appl. 289 (2004), no. 1, 231-243 https://doi.org/10.1016/j.jmaa.2003.09.047
- S. Lu and W. Ge, Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Analy. 56 (2004), no. 4, 501-514 https://doi.org/10.1016/j.na.2003.09.021
- J. Mawhin, Periodic solutions of some vector retarded functional differential equations, J. Math. Anal. Appl. 45 (1974), 588-603 https://doi.org/10.1016/0022-247X(74)90053-5
- G. Wang, A priori bounds for periodic solutions of a delay Rayleigh equation, Appl. Math. Lett. 12 (1999), 41-44 https://doi.org/10.1016/S0893-9659(98)00169-4