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DISCRETE CONDITIONS FOR THE HOLONOMY GROUP
OF A PAIR OF PANTS

Hong CHAN KiM

ABSTRACT. A pair of pants £(0, 3) is a building block of oriented surfaces.
The purpose of this paper is to determine the discrete conditions for the
holonomy group 7 of hyperbolic structure of a pair of pants. For this goal,
we classify the relations between the locations of principal lines and entries
of hyperbolic matrices in PSL(2,R). In the level of the matrix group
SL(2,R), we will show that the signs of traces of hyperbolic elements
play a very important role to determine the discreteness of holonomy
group of a pair of pants.

1. Introduction

Let M be a compact connected smooth surface with x(M) < 0 and 7 =
71 (M) the fundamental group of M. A hyperbolic structure on M is a repre-
sentation of M as a quotient /T of a convex domain 2 C H? by a discrete
group I' ¢ PSL(2,R) acting properly and freely. For a given hyperbolic struc-
ture on M, the action of 7 on the universal covering space M of M produces
a homomorphism h : 7 — PSL(2, R) called the holonomy homomorphism and
it is well-defined up to conjugation in PSL(2,R). Since the holonomy homo-
morphism h : 7 — PSL(2,R) is isomorphic to its image I' = h(n) called
the holonomy group, the generators of m can be presented by the matrices in
PSL(2,R) up to conjugation. (For more detail, see Thurston [6].) Therefore
giving a hyperbolic structure on M is equivalent to finding a discrete sub-
group I' of PSL(2,R) up to conjugation. (For more detail, see Matsuzaki and
Taniguchi [5].)

Let M = %(g,n) be a compact connected oriented surface with g-genus and
n-boundary components. If y(M) = 2 —2g—n < 0, then there exist 3¢ —3+n
nontrivial homotopically-distinct disjoint simply-closed curves on M such that
they decompose M as the disjoint union of 2g — 2 4+ n pairs of pants (0, 3).

Received October 19, 2005.

2000 Mathematics Subject Classification. 32G15, 5TM50.

Key words and phrases. a pair of pants, hyperbolic structure, hyperbolic matrix, discrete
holonomy group.

The author gratefully acknowledges the support from a Korea University Grant.

(©2007 The Korean Mathematical Society
615



616 HONG CHAN KIM

Thus a pair of pants (0, 3) is a building block of an oriented surface M. (For
more detail, see Wolpert [7].)

Thus the purpose of this paper is to determine the discrete conditions for the
holonomy group I' = h(7) of a pair of pants 3(0, 3). In Section 2, we recall some
preliminary definitions and classify the locations of fixed points and principal
lines of hyperbolic elements. In Section 3, we calculate the discrete conditions
for the holonomy group 7 of a pair of pants ¥(0,3) in terms of SL(2,R). In
Section 4, we present a computer algorithm for deciding the discreteness of a
holonomy group.

2. Hyperbolic elements and the locations of principal lines

Suppose G is a Lie group and X is a connected smooth manifold. An action
of G on X is called strongly effective if g1,92 € G agree on a nonempty open
set of X, then g; = g2. Let H2 = {z € C | Im(z) > 0} be the upper half plane.
The Lie group SL(2,R) acts on H? by

a b az+b
(2.1) Az-(c d).z——cz+d'
Since we have A-z = (—A) - z for any A € SL(2,R) and z € H?, the Lie group
PSL(2,R) = SL(2,R)/+I acts strongly effectively on H?.
The elements of SL(2,R) are classified into three different types. Since
f(A) = X2 —tA + 1 is the characteristic polynomial of A € SL(2,R) where
t = tr(A), we classify elements of SL(2, R) by their two eigenvalues ;

e hyperbolic < eigenvalues are distinct real numbers < tr(4)% > 4
e parabolic < eigenvalues are equal < tr(4)? =4
e elliptic < eigenvalues are conjugate < tr(4)? < 4.

Let A be an element of PSL(2,R). Though the trace and eigenvalues of A
are not defined, the absolute value of trace and eigenvalues are well-defined.
We classify the elements of PSL(2,R) by their fixed points in the closure of
H?2. The number and locations of fixed points of A closely relate to the absolute
value of tr(A). For A € PSL(2,R),

e hyperbolic < two distinct fixed points on H? < |tr(A4)| > 2
e parabolic < unique fixed point on OH? & |tr(A)| = 2
e elliptic < unique fixed point on H? & |tr(4)] < 2.

A hyperbolic element A of PSL(2,R) can be expressed by the diagonal matrix

A 0 let A 0
a]E=(0)
via an SL(2,R)-conjugation where A > 1. The following theorem is due to
Kuiper [4].

Theorem 2.1. Suppose M is a compact connected oriented hyperbolic surface.
Then every nontrivial element of holonomy group T' C PSL(2,R) s hyperbolic.
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The goal of this paper is to determine the discrete conditions for the holo-
nomy group I' = k() of a hyperbolic structure of a pair of pants X(0, 3). Since
every nontrivial element of holonomy group I" is hyperbolic, we shall consider
some properties of hyperbolic matrix. The principal line of a hyperbolic ele-
ment A € SL(2,R) or PSL(2,R) is the A-invariant unique geodesic in H?. It
is the line joining two fixed points of A. Since the principal line has a distinct
direction, one of the fixed points of A is called the repelling fixed point and
the other is called the attracting fixed point. For more easy understanding,
see Figure 1, 2, and 3 or Beardon’s book [1]. We now consider the relations
between the location of the principal line of A and the entries of A. They are
some extended results compared with author’s paper [3].

Lemma 2.2. Let 2,4, 2, be the attracting and repelling fized points of a hyper-

bolic element A = Z Z } in PSL(2,R). Suppose both fized points are finite

(not infinite). Then we have
(1) zo+2,>0 <= (a—d)c>0,
(2) 2o+ 2, <0 <= (a—d)c<0,
(3) 20 2r >0 <= bc<O,
(4) zo-2- <0 <= bec>0,
(6) 24 < zr < (a+d)c<0,
(6) z4 > 2» << (a+d)c>0.

Proof. Since z,, 2, are the fixed points of the hyperbolic transformation A(z) =

gjj:s, they are the roots of the equation

(2.3) cz?+(d-a)z2—b=0.

We claim that ¢ # 0. If ¢ = 0, then 1 = det(A) = ad. Thus d = a~! and
A(z) = a®z + ab. This yields that oo is a fixed point of A(z) since a # 0. It
contradicts the assumption that both fixed points are finite. Since z,+2z, = “;d
and z4 - 2, = _Tb, it proves 1, 2, 3, and 4.

Since we have ¢ # 0, the roots z,, 2, of the Equation (2.3) can be expressed
by

—d)x+/ d)?—4
(2.4) Zay 2 = (¢=d) (a+d) .
2¢c
Let w = Zaf2 = 24 he the mid point of the fixed points z, and z.. Then
the condition z, < z, is equivalent to A(w) < w. (See Figure 1.) Since we can
compute

(a+d)? —4
2(a +d)c

and (a + d)? > 4, it proves z, < 2, if and only (a + d) ¢ < 0. Similarly z, > 2,
if and only (a + d) ¢ > 0. This completes the proof. O

(2.5) Alw) —w =
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Proposition 2.3. Let A € PSL(2,R) representing a hyperbolic transformation
of H? with the finite fized points z.,2z,. Then we have the following relations.

(1) 0< 2z, <2z < a®><d* bc<0,bd>0
(2) 0< 2, <2, <= a*>d* bc<0,ac>0
(B) 24 <2, <0 <> a®>d? bc<0,ac<0
(4) 2r <2, <0 <= a®><d% bc<0,bd<0
(5) 2 <0<z < bc>0,ac<0,bd<0
(6) 2, <0< 2, < bc>0,ac>0,bd>0
00 00
A A

A(0) A(w) \ A(co

0 Za w z  0zx w %

FIGURE 1. Fixed points with 0 < 2z, < 2z, and 0 < 2z, < 24

0 o0
A A
A(o0) A(0)
Zq w 2 0 Zp w Zq, 0

F1GURE 2. Fixed points with 2, < 2, <0 and z, < z, <0

AOO OOA
4<w>m; _Aﬂoi
oz 0 oz zZ 0 Za

FIGURE 3. Fixed points with z, <0< 2z, and 2z, < 0 < 2,
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Proof. Suppose 0 < z4 < 2z,. From Lemma 2.2, it is equivalent to the relations
(a—d)c>0,bc<0and (a+d)c < 0. Thus (a~d)(a+d)c? = (a® —d?)c? < 0
implies a? < d?. Since z, < 2, the image of the origin under A should be
positive as in the Figure 1. That means A(0) = b/d > 0. Thus we have bd > 0.
Conversely suppose a? < d?, bc < 0, bd > 0. Then the signs of ¢ and d should
be opposite. Since the condition a? < d? is equivalent to —|d| < a < |d|, if
¢ > 0and d < 0, then a? < d? implies d < a < —d. Thus (@ — d)c > 0 and
(a+d)c<0. If¢c<0andd >0, then a® < d? implies —d < a < d. Thus we
have (¢ — d)c > 0 and (a + d) ¢ < 0 again. It proves the case 1. Similarly we
can prove the cases 2, 3, and 4.

Suppose 2z, < 0 < z.. From Lemma 2.2, it is equivalent to the relations
be > 0and (a+d)c < 0. Since z, < 0 < 2, the image of the origin and infinite
under A should be negative as in the Figure 3. That means A(0) = b/d < 0
and A(oc) = a/c < 0. Thus we have bd < 0 and ac < 0. Conversely suppose
be > 0,ac < 0,bd < 0. Since ad = be+ 1, the condition be > 0 implies
ad > 1. If ¢ > 0, then we have the signs a < 0,b > 0 and d < 0. Therefore
(a+d)e <0.If ¢ < 0, then we have the signs @ > 0,b < 0 and d > 0. Therefore
{a+d)c < 0 again. Tt proves the case 5. Similarly we can prove the case 6. O

3. Holonomy group of a pair of pants X(0,3)

Recall that a pair of pants M = X(0, 3) is a sphere with three holes. Suppose
M is equipped with a hyperbolic structure. Since the holonomy homomorphism
h:m — PSL(2,R) is isomorphic to its image I' = h(r), the fundamental group
7 of M will be identified with

7= (A B,CePSL2R)|R=CBA=1).

A

B c

FIGURE 4. A pair of pants M = %(0, 3)

The following is a more effectively modified method for representing gener-
ators of holonomy group of a pair of pants compared with author’s paper [3].
Let A, B,C € PSL(2,R) represent the boundary components of M. We will
find the expression of the generators A, B and C of 7 in terms of SL(2 R)
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instead of PSL(2,R) because SL(2, R) is more convenient to compute and un-
derstand than PSL(2, R). Since the matrices A, B, C € SL(2,R) are hyperbolic
and represented up to conjugate, without loss of generality, we can assume

(3.1) B= ( 0 u(“)l )

with p > 1. Thus
p-z+0 2
B(z)=-"°"T"__
(2) 0-z4+p?t re
and 0 is the repelling fixed point and oo is the attracting fixed point of B.

Suppose 0 and oo are not a fixed point of a hyperbolic element

a b
4= ( o b )
Then we have the conditions b # 0 and ¢ # 0. Because if b = 0, then A(0) =
b =0 and if c =0, then A(c0) = & = co. Suppose tr(4) = A + A1, Without
loss of generality, we can assume A > 1. If tr(A4) < —2, then we exchange A
to —A. Since a +d = tr(A) = A+ A7}, we have d = —a + A + A~1. Since
det(A) = ad — be = 1, we obtain
be=ad—1=a(—a+ A+ A1) —1=—(a—A)(a—A"1).
Thus we have b = —(a — A)(a — A~1)c ™! since ¢ # 0. Therefore

_ _ o y—1y,.—1
(3.2) A= ( ’ (“_ak}r(‘hi_l)c ) with A > 1.

Proposition 3.1. Let z,, 2, be the repelling and attracting fixed points of the
hyperbolic element A in (3.2). Then

1) 0<za<2z <> ¢c<0, a< ™!

(2) 0< 2z, <24 <= ¢c>0,a> )

(3) 2z <2z <0 < ¢<0,a>A

(4) 2, <2, <0 < ¢>0, a< !

(5) 2 <0<z <= c<0, A7l <a< A
(6) 2, <0<z, & >0, Al <a<

Proof. We will prove the cases 1 and 5. The other cases are can be proven
similarly. Suppose 0 < z, < z,.. From Proposition 2.3, it is equivalent to the

relations a2 < d?, be < 0 and bd > 0. Since b = —(a — A)(a — A"1)c! and
d=—a+ A+ A71, we have
d—a®> = A+2HO+21-20)>0
~bec = (a=Ne-211H>0
-bd = (a—XN(a=A"Dec Y =a+r+217Y) <0,

The condition A > 1 implies (A + A™! — 2a) > 0. We claim that —bc > 0
induces (a — A) < 0 and (a— A1) < 0. If (a—A) >0 and (a — A~1) > 0, then
it produces (2a — A — A7) > 0. It contradicts to (A + A™! — 2a) > 0. Since
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(ma+A+A71) > (—a+ ) > 0, the condition —bd < 0 induces ¢ < 0. Therefore
we get the results ¢ < 0 and @ < A~1. Conversely suppose we have ¢ < 0 and
a < A7Y Then A™! < 1 < X induces a < A. Through easy computations, we
can show a? < d2, bc < 0 and bd > 0. It proves the case 1.

Suppose z, < 0 < z,. From Proposition 2.3, it is equivalent to the relations
bc>0,ac<0andbd < 0. We claim that —bc < 0 induces (¢ — A) < 0 and
(@a=A"1>0.If(a—))>0and (a— A1) <0, then we have A < a < A™L. It
contradicts to A > 1. The condition A™! < a induces a > 0. Thus ¢ should be
negative. Therefore we get the results ¢ < 0 and A™! < a < A. Through easy
computations we can show the converse is also true. O

Now we consider the positions of fixed points of the matrix A.

Proposition 3.2. Let A be the hyperbolic element in (3.2). Then the positions
of repelling and attracting fized points z,, 2, of A are

A1 A—
(1) 0< 20 <z = 2, =559, zrz(T—ci)),l
2)0<z <z = o= 5 -l

(—¢) (—¢)

—O-a) _ -0 —a)

2a

( C
(3) 2 <2, <0 = zazl(i“_*\__ll7 z, = —{a=X)
(4) 2r <2 <0 = 2z, =

(

) s <0<s = 5= D, = g

p— -—_ a— -1
CCR I )

6) 2r <0< 2y = 2, =

where the inside of each parentheses () is positive.
Proof. By the Equation (2.4),
(2a—=A-2AHx/A+A1 124

za, zT -
2¢
(2a — X — )\“1) + (A — /\‘1)
2¢
a— A1 a—A
= or .
c c

(Case 1.) Suppose 0 < z, < z,. From Proposition 3.1, we have ¢ < 0, a <
AL Since 0 < (A7! — @) < (A — a), the attracting fixed point 2z, of A is
(A7t —a)/(—c) and the repelling fixed point 2, of A is (A — a)/(—c).

(Case 2.) Suppose 0 < z, < z,, then we have ¢ > 0, @ > X. Since (a—A"1) >
(a = A) > 0, the repelling fixed point z, of A is (a — X)/c and the attracting
fixed point z, of A is (a — A1) /c.

(Case 5.) Suppose z, < 0 < z, then we have ¢ < 0, A™! < a < A. Since
(A™! = a) < 0 < (A — a), the attracting fixed point z, of A is (A~ — a)/(—c)
and the repelling fixed point 2, of A is (A ~ a)/(—c). Similarly we can prove
the cases 3, 4 and 6. O
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Since R = CBA = I, we can get C = A"'B~!. Therefore the generators
A, B and C of 7 are expressed by

63 A=<a —(a—)\)(a—)\_l)c‘1>, B=(“ 01)’

c —a4+ A+ 271 0 u-
and
(3.4) C= ( u‘l(—i:_)l\j AT pla- A)(z; AT )
with A > 1 and p > 1. As a result, the trace of C is
(3.5) tr(C) = p H(—a+ A+ A7) + pa.

Let A, B, A,, B, be the repelling and attracting fixed points of the hyper-
bolic matrices A and B respectively. We define CR(A, B) by the cross ratio of
B, Ar, Ay, B, ; that is
(Ba - Aa)(Ar - Br)

(Ba - Ar)(Aa - Br) .
Then CR(A, B) = CR(B, A) and it represents relations between fixed points of
A and B. Suppose f is a linear fractional transformation such that f(B,) = oo

and f(B,) = 0. Since the cross ratio is invariant under the linear fractional
transformations,

CR(A, B) = [Ba, Ay, Aq, By] =

(00— za)(zr = 0) _ 2
(00— 2. )(2a —0) 2z,
where z, = f(A4,) and 2z, = f(A,).

CR(4,B) =

’

Proposition 3.3. Suppose A, B are hyperbolic elements in SL(2,R). Then we
have the following relations between CR(A, B) and the locations of fized points.

(1) CR(AB)>1 <= 0<2,< 2 0or 2pr <2,<0
(2) 0<CR(A,B)<1 <= 2,<2z.<0 or 0< 2, <2,
(3) CR(A,B) <0 < 2, <0<z, 0r 2, <0< 2.

Proof. If CR(A, B) = z,/z, > 1, then both fixed point have the same signs.
Thus if z, > 0 then 2z, > 2, > 0, and if z, < 0 then 2. < z, < 0. Easily we can
see that the converse is also true. Other cases can be similarly proved. |

Suppose A, B, C are hyperbolic elements. Then the holonomy group © =
(A,B,C | R=CBA = I) is discrete if and only if the locations of the principal
lines of A, B, C should be one of the Figure 5 up to conjugation. (For more
detail, see Keen {2])

Theorem 3.4. Suppose that A, B are hyperbolic matrices in SL(2,R) and
7= (A,B,C|R=CBA=1I). Then

(1) if m 4s discrete, then CR(A, B) > 1.
(2) if CR(A4,B) <1 or CR(A4, B) = oo, then 7 is not discrete.
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C
B3 A m
Zq Zp W, Wy

0

C
/\ A 18
wr,' wa, z’r Za

0

F1GURE 5. The principal lines of a discrete group «

Proof. If 7 is discrete, then the locations of principal lines of A and B should
one of Figure 5. Thus CR(A4, B) = 2,/2, > 1. Since A is hyperbolic, we have
2, # 2q. This implies CR(A, B) = 2, /2, can not be 1. If CR(A, B) = 0 or oo,
then the hyperbolic matrices A and B have common fixed point. Thus 7 is not
discrete. If 0 < CR(A, B) < 1 or CR(A, B) < 0, then from the above mentioned
Keen’s equivalent relation of discreteness, 7 is not discrete. a

Proposition 3.5. Suppose that C is the hyperbolic matriz in (3.4). Then the

fized points w, and w, of C are

E++vD

~2c ’

where E= A+ X" —~a—p*a) and D= A+ X1 —a+ uza)2 — 42

Proof. By the Equation (2.4), the fixed points w,, w, of C is

B H=a+ A+ A —pa) /g (—a+ A+ A" ) +pal?2 -4
2u1c

[(—a+ A+ A7) = ua) & /(—a ¥ AT AD) ¥ i2aP — 47
—2¢ '

Wq, Wy =

O

Theorem 3.6 (Main Theorem). Let A, B be hyperbolic matrices in SL(2,R)
with tr(A) > 2 and tr(B) > 2 and # = (A,B,C | CBA = I). Then w is
discrete if and only if CR(A, B) > 1 and tr(C) < —2.
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Proof. (=) Without loss of generality we may assume A, B, C are the matrices
in (3.3) and (3.4). Suppose 7 is discrete. Then CR(A, B) > 1 by Theorem 3.4.
If0 < 24 < 2, < wg < wy, then we have ¢ < 0 and & < A™! < 1 < XA by
Proposition 3.1. Let C;; stand for the (7, j)-th entry of the matrix C. Then the
condition
C13Co = pPa( X —a)A  —a)c™t >0

implies a < 0. If w, < wg < 2, < 24 < 0, then we have ¢ > 0 and a < A71L.
Then the condition C12C2 < 0 also implies a < 0. Thus both cases we have
a < 0. The condition tr(B) > 2 implies 4 > 1. Since

[Cul = p7Y| = a+ A+ 271 < |Co2| = |ula],
we have 7! (—a+ A+ A7) < p(—a). Thus
tr(C) = u~H(=a+ A+ A7) +pa<0.
Since C' is hyperbolic, the trace of C should be less than —2.

(<) Since CR(A, B) > 1, the fixed points of A are 0 < 2z, < 2, OF 2, < 2, < 0
by Proposition 3.3. If 0 < z, < 2., then we have ¢ < 0 and @ < A~!. The
condition tr(C) = g~ (—a+ A+ A7) + pa < —2 and p > 1 implies a < 0.
Therefore we have the followings ;

C12Cy1 = —-(/\ — a)()\_l — a) <0
C12Ce = uza()\ — a)()\—l — a)c_l >0
Cual = |Coal = wt(—a+ A+ 271 = p(—a) = tx(C) < —2.

From Proposition 2.3, we get 0 < w, < wy. Since ¢ is negative, from Proposi-
tion 3.5, the fixed point w, and w, of C should be

E—-VD E++D
Wy, = ———— and w, = ——.
—2c —2c
To show = is discrete, it is enough to show that z, < w,, i.e.,
. (A—a) <w = E-VD
" (-9 “T (=209
that is equivalent to 2(A — a) < E — v/D since ¢ < 0. Since
(3.6) VD < E-2(A—a)=-A+A"1+a—p’a,

and —A+2"'+a—p2a> A=At +a—p?a = —tr(C)u > 0, it is equivalent
to show that

D=(X+x""! —a+u2a)2 —4p? < (=27t +a——p2a)2.
After some calculations we can get the equivalent condition
0< (2 -1)(\-a).

This is true since & > 1 and A > a, it proves the discreteness of .
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If 2, < 2z, < 0, then we have ¢ > 0 and a < A™!. The condition tr(C) =
p(=a+ A+ A"+ pa < —2 and p > 1 implies @ < 0. Therefore we have
the followings ;

C12021 = -(/\*Cl)(/\-(l) <0
C12Cy = /1,2(1()\ — a)()\'l — (l)C—'l <0
|Ci1] = |Coa] = pl(=a+A+2A7Y) —p(—a) =tr(C) < —2.

From Proposition 2.3, we get w, < w, < 0. Since ¢ is positive, from Proposition
3.5, the fixed point w, and w, of C should be

E+vD —E—+D E-vD —-FE++D
= = and wg = = .
—2¢ 2¢ —-2c 2¢
To show m is discrete, it is enough to show that w, < z,, i.e.,
I —()\ —
Wy = ___+—Q < zr - ._()\—a)
(2¢) c

that is equivalent to —F + v/D < —2(A —a) since ¢ > 0. Then we have
VD<E-2A—a)=-A+A"'+a— pla.

It is the same inequality in (3.6), thus it holds since x> 1 and A > a, it proves
the main theorem. a

4. Application : algorithm for deciding the discreteness

Finally we can present an algorithm for deciding the discreteness of a holo-
nomy group of a pair of pants £(0, 3). For given two hyperbolic elements A, B
in SL(2,R),

Step 1: Compute tr(A) and tr(B). If tr(A) < —2, then replace A by
—A. Similarly if tr(B) < —2, then replace B by —B.

Step 2: By step 1, without loss of generality, we may assume that tr(A) >
2 and tr(B) > 2. Compute the attracting and repelling fixed points
Ag, A, of A and B,, B, of B.

Step 3: Compute CR(A, B) = [B,, A,, Aq, B;]. If CR(A,B) > 1, then
go to step 4. If 0 < CR(A, B) < 1, replace A by A=, Then we have
CR(4,B) > 1. If CR(A,B) < 0 or CR(A,B) =1 or CR(4,B) = oo,
then hyperbolic elements A, B can not generate a discrete holonomy
group.

Step 4: Compute C = A71B~L. If tr(C) < —2, then

7= (AB,CeSL2R)|R=CBA=1)

is a discrete group. If tr(C) > —2, then = is not discrete.

Using above algorithm we can make a computer program determine the dis-
creteness of a holonomy group.
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